Visualization and interpretation of high-throughput genomics data

Chongzhi Zang Associate Professor zang@virginia.edu zanglab.org

August 22, 2023

My lab develops computational methods and uses computational approaches to study epigenetics and transcriptional regulation

Learning Objectives

- Be able to read common plots for presenting genomics data
- Understand essential elements in genomics data visualization
- Get some tips for data presentation

Chr19 (q13.12) 19p13.3 19p13.2 13.12 19p13.11 19p12 19q12 q13.11 g 3.12 19q13.2 q13.32 q13.33 13.41 q13.42 q13.43

С

Buenrostro et al. Nat Methods 2013

Buenrostro et al. Nat Methods 2013

High-throughput short-read sequencing (Illumina)

Single-end

Paired-end

Original sequence reads are not easy to visualize

Signal tracks are sequence reads piled up

• bedGraph:

10344200	10344250	5
10344250	10344300	10
10344300	10344350	25
10344350	10344400	15
10344400	10344450	8
	10344200 10344250 10344300 10344350 10344400	10344200103442501034425010344300103443001034435010344350103444001034440010344450

• wiggle:

track type=wiggle_0 variableStep chrom=chr4 span=50 10344200 5 10344250 10 10344300 25 10344350 15 10344400 8

• bigWig: indexed binary format

Essential elements in genome browser tracks

- Chromosomal locations
- Track label
- Track scale
 x: resolution?
 y: normalization?

How to integrate patterns observed on signal tracks?

198 million paired reads

0

single-end reads

1 kb

Essential elements in a ripple heatmap

- Heatmap presents 3-dimensional data
- x: What loci/anchor is each row? Range?
- y: What are the rows? How many? How are they ranked?
- h: Data title/label (what signal?) color scale?

Multiple datasets visualization by ripple heatmap

Creyghton et al. PNAS 2010

Luyten et al. Genes Dev 2014

Composite curve plots

Luyten et al. Genes Dev 2014

Essential elements in a composite curve plot

- Data title/label/legend
- Data source (average of what?)
- x: anchor, scale
- y: scale, normalization

Buenrostro et al. Nat Methods 2013

Common misinterpretations of composite plots

- Caveat 1: A peak in a composite plot may be contributed by only a tiny fraction of regions (not representative of the global picture)
- Caveat 2: A higher peak does not necessarily mean stronger signal or more region coverage

Venn diagram presents yes/no relations between sets

Heatmaps and scatter plots are more informative

1,000

18

Volcano plot for differential gene expression

- Scatter plot
- 2 dimension:

x: signal strength (e.g., log2 fold change)y: statistical significance (e.g., -log10P)

Set cutoffs on 2 axes

Differential gene expression visualization by heatmap

Wang et al. Nature 2022

Co-expressed gene clusters

Hi-C contact heatmap for 3D genome interactions

Rao et al. Cell 2014

Hi-C contact heatmap for 3D genome interactions

Rao et al. Cell 2014

Essential elements in a Hi-C contact heatmap

- Scale, scale, scale
- Resolution
- Normalization
- Blocks, stripes, loops (2d peaks)

5 kb resolution

Circos plot integrates multiple types of genomics data

T47D K562

Chromosome - coordinates - Copy number - Deletion, duplication - Interchromosomal TLs inversions, and unclassified intrachromosomal rearrangements (>1Mb)

Single-cell data: clustering vs. t-SNE/UMAP visualization

Bubble plots: NGS-based applications (-seq)

https://www.youtube.com/watch?v=jbkSRLYSojo

Summary

Some tips

Scatter plot

• The density of the data points matters!

Choose the appropriate scale for plotting (linear or logarithm)

?

Plots from Cell 2014

•

Bar charts should always start from 0, and on the linear scale. If difference is small, box plots or original dots are better.

Another example

Scatter plot? Group them if needed

expression

However, grouping should be even

Cell 2014

Scale bar matters!

Take-Home Messages

- Always read the axes and pay attention to the scales on a figure.
- Bar charts should always start from zero on the linear scale.
- Data point density on a scatter plot is important.
- Group the data points if needed, but do it in an even way.

Having the data is not enough; presentation and interpretation matter

RNA-seq ChIP-seq DNase/ATAC-seq Hi-C Single-cell resolution...

. . .

Gene expression Protein factors Chromatin 3D genome Multi-omics

. . .

Transcriptional regulation, Chromatin organization,

. . .

New insight?

New biology!

Overfitting, overinterpretation...

DRAW 2 CIRCLES

DRAW THE LEGS

Thank you very much!

zang@virginia.edu

zanglab.org

zanglab.org