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Epigenome

4Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI) 

nucleosome

histone

The epigenome is a multitude of chemical compounds that can tell the genome what to 
do. The epigenome is made up of chemical compounds and proteins that can attach to 
DNA and direct such actions as turning genes on or off, controlling the production of 
proteins in particular cells.                           

-- from genome.gov



Factors/marks of the epigenome
• DNA methylation
• Histone marks

– Covalent modifications
– Histone variants

• Transcription factors
• Chromatin regulators

– Histone modifying enzymes: writers, readers, erasers
– Chromatin remodeling complexes (e.g., SWI/SNF)
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Histone marks
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• Nucleosome Core Particles 
• Core Histones: H2A, H2B, H3, H4
• Covalent modifications on histone 

tails include: 
methylation (me),
acetylation (ac),
phosphorylation,
ubiquitylation, …

• Histone variants: H2A.Z, H3.3,…
• Histone modifications are 

implicated in influencing gene 
expression. Allis C. et al. Epigenetics 2006

H3K27ac
H3K4me1
H3K4me3
H3K9me3
H3K27me3
H3K36me3



Histone modifications associate with regulation 
of gene expression

Promoters Putative enhancers
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Wang, Zang et al. Nat Genet 2008

histone acetyl transferases (HATs) can associate with different
regions of genes. For example, PCAF associates with the elongation-
competent RNA Pol II, whereas p300 interacts with the initiation-
competent RNA Pol II (ref. 19). Additionally, depletion of GCN5
or PCAF, but not CBP or p300, affects H4K8ac and H3K14ac20.
The distribution patterns of these histone acetylations and histone
methylations are exemplified by the genomic locus for ZMYND8 (also
known as PRKCBP1), which is expressed in CD4+ T cells (Fig. 1g). The
promoter region (highlighted in red), which was defined as a 2-kb
region surrounding the TSS, is associated with 25 modifications
(P o 10!7).

To identify the patterns of histone modifications in an unbiased
way, we examined each of the 12,541 gene promoters for association
with each of the 18 acetylations, 19 methylations and H2A.Z. Of the
possible patterns, only a small fraction exists at promoters. Of 4,339

detected patterns, 1,174 are associated with
multiple genes and 3,165 with only one gene
each (Fig. 2a). The 13 most prevalent patterns
are each associated with more than 62 genes.
We next examined the expression of genes in
these patterns, using the mean expression of
all genes as a reference (Fig. 2b). It seems that
we can roughly classify these top patterns into
three classes (I, II and III in Fig. 2b) accord-
ing to expression. Four of six patterns in class
I contain H3K27me3 and correlate with low
expression. These patterns also contain
H3K4me1/2/3, H3K9me1 and H2A.Z but
no acetylations. The patterns containing
only H3K4me3 or no modification also
belong to this class. Class II contains
H3K36me3 or a modification backbone con-
sisting of 17 modifications (as discussed
below), or the backbone plus H4K16ac,
which correlates with intermediate gene
expression. Class III shows the highest expres-
sion, and it includes H2BK5me1, H4K16ac,
H4K20me1 and H3K79me1/2/3 in addition
to the modification backbone (Fig. 2b). Our
Gene Ontology analysis suggests that genes

involved in cellular physiology and metabolism are enriched in the
active class III patterns, consistent with their house-keeping roles (data
not shown). In contrast, many genes involved in development, cell–
cell signaling and synaptic transmission are enriched in the inactive
class I patterns, consistent with their not being required for mature
T-cell function.

To correlate each modification with gene expression, we compared
the average gene expression with or without each modification
(Fig. 2c). H3K27me3 was among a group of repressive marks also
including H3K27me2, H3K9me2, H3K9me3 and H4K20me3, whereas
most other modifications correlated with activation. Although the
modification patterns do not uniquely determine the extent of
expression, the H3K79me3 and H2BK5ac modifications showed
weak correlation with expression within a modification pattern
(Supplementary Fig. 5 online).
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Figure 3 Patterns of histone modifications at
enhancers. (a) The histone modification pattern at
the CD28RE enhancer (highlighted in red) of the
IL2RA gene. Significant modifications are
indicated by asterisks on the left. (b) Histone
modification patterns at the IFNG gene and its
downstream enhancer, CNS22, are shown.
Significant modifications at CNS22 are indicated
by asterisks on the left. (c) The fractions of
enhancers associated with each of the 38
modifications. (d) Patterns of histone
modifications at 4,179 DNase hypersensitive
sites. The y axis indicates the number of patterns,
and x axis indicates the number of hypersensitive
sites associated with each pattern. (e) Correlation
analysis of gene expression with the ten largest
modification patterns by assigning an enhancer to
the TSS of the nearest known gene. All, all
DNase I hypersensitive sites. The number of
hypersensitive sites associated with each
pattern is indicated.
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upstream and 5 kb downstream for groups of 1,000 genes according to
their expression (Fig. 1d–f and Supplementary Fig. 4 online). We
found that all acetylations positively correlated with gene expression,
consistent with their involvement in tran-
scriptional activation. However, our data
indicate that different acetylations may target
different regions of genes. For example,
H2AK9ac, H2BK5ac, H3K9ac, H3K18ac,
H3K27ac, H3K36ac and H4K91ac are mainly
located in the region surrounding the TSS
(Fig. 1d and Supplementary Fig. 4), whereas
H2BK12ac, H2BK20ac, H2BK120ac, H3K4ac,

H4K5ac, H4K8ac, H4K12ac and H4K16ac are elevated in the promoter
and transcribed regions of active genes (Fig. 1f and Supplementary
Fig. 4). These results are consistent with previous reports that specific
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Figure 1 Three distribution patterns of histone acetylations. (a–c) Normalized tag counts of histone acetylation signals surrounding the TSS were indicated
for highly active, intermediately active (two levels) and silent genes. Each group represents 1,000 genes with similar expression, as described in Methods.
(d–f) Normalized tag counts of histone acetylation signals of 1,000 highly active or silent genes across the gene bodies. The plots extend 5 kb 5¢ and 3¢ of
the genic regions (see Methods). txStart, transcription start site; txEnd, transcription end. (g) Chromatin modification patterns at the ZMYND8 (PRKCBP1)
gene locus. Significant modifications in the –1 kb to +1 kb region surrounding the TSS (P o 10!7; highlighted in red) are indicated by asterisks on the left.
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Figure 2 Patterns of histone modifications
associated with promoters. (a) Patterns of histone
modifications at promoters. The y axis indicates
the number of patterns of 39 histone
modifications (see Methods), and the x axis
indicates the number of promoters associated
with each pattern. (b) Correlation of gene
expression with the thirteen most prevalent
modification patterns. B, the 17-modification
backbone; All, all genes. The number of
promoters within each pattern is also indicated.
The gene expression is determined using DNA
microarrays. See Figure 4a for the composition of
‘backbone’. (c) Correlation of each modification
with gene expression. The changes in gene
expression (log2) are calculated by comparing the
average expression of the subsets of genes with
or without a particular modification.
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Functional annotation of common histone marks

survey DNA enrichment at !500 representative loci using the
nCounter probe system. High-quality antibodies are distinct
from IgG patterns and the occupancy distribution correlates
with a logical set of chromatin states. Validating antibody re-
agents for enrichment specificity and robustness ensures good
quality ChIP-seq data sets with high signal to noise ratios.

Given that ChIP-seq is a mature technology, the technical
restrictions of the technique are well defined by its users. These
restrictions include the need for large amounts of starting mate-
rial, limited resolution, and the dependence on antibodies.
Improvements to ChIP-seq have been developed to address
these limitations and expand the possibilities of its use. Collect-
ing enough starting material for ChIP-seq can be challenging
because experiments typically require 1 million (histone modifi-
cations) to 5million (TFs and chromatinmodifiers) cells. Although
this is feasible when studying fast dividing cell lines, the chal-
lenge arises when studying primary cells and rare populations
such as cancer stem cells or progenitor cells. ChIP-seq samples
of 50,000 cells or less are possible with the ChIP-nano protocol
(Adli and Bernstein, 2011). Key method modifications achieve
effective chromatin fragmentation in small volumes, ensure
minimal sample handling and loss by washing samples in col-
umns, and reduce background signal. Another procedure, called
ChIP-exo, improves the limited resolution from fragmentation
heterogeneity after chromatin is prepared by sonication (Rhee
and Pugh, 2011). As its name suggests, sonicated and immuno-
precipitated DNA is treated with a 50-to-30 exonuclease to digest
DNA to the footprint of the crosslinked protein such that
sequencing results are nucleotide resolution. This type of high-
resolution protein-binding data is most beneficial for uncovering
motifs of specific binding proteins and the effect of sequence
variants on protein-binding affinity. Profiling genome-wide
DNA-protein interactions with ChIP-seq is technically chal-
lenging when studying novel proteins or protein isoforms, such
as a histone variant, that lacks a robust or specific antibody.
In this case, an obvious approach is to transiently or stably ex-
press a protein of interest (POI) with a tag or epitope that can
be readily ChIP’ed. Controls are necessary to ensure the fusion
protein’s localization is not altered by nonendogenous expres-
sion levels, protein instability, steric inherence, or other effects
of the tag itself.

A ChIP step can be added to other genomic profiling ap-
proaches for integrated epigenomic profiling. First, two ChIP

steps in a row, or Sequential-ChIP-seq, can uncover histone
PTMs on the same molecule or chromatin-associated proteins
in the same complex. Several groups combined bisulfite
sequencing with ChIP giving rise to BisChIP-seq and ChIP-BS-
seq (Brinkman et al., 2012; Statham et al., 2012). Long-distance
DNA interactions mediated by a specific protein can be profiled
using chromatin interaction analysis by paired-end-tag
sequencing, or ChIA-PET (Fullwood et al., 2009). We anticipate
other inventive uses of ChIP technology to continue to uncover
undiscovered roles of histone modifications and histone variants
in transcriptional regulation.

Mapping of Chromatin Structures
Nucleosome Positioning
Moving up the hierarchy of genomic organization, we now look
beyond the DNA and histone modifications to the positioning
of nucleosomes along the genome. Our epigenome at its
most basic level is repeating units of 147 base pairs wrapped
1.7 times around each nucleosome with varying distances of
linker DNA between each unit. Even this extremely simplistic
model is complex because nucleosome positioning can both
inhibit and promote factor binding (Bell et al., 2011). First,
nucleosomes can be positioned to obstruct or reveal specific
DNA sequences. Second, becausemodifications on histone tails
serve as binding platforms for transcriptional regulators, nucleo-
some positioning regulates factor recruitment. And finally,
nucleosomes are suggested to inhibit transcription by slowing
progression of RNA polymerase II as it transcribes through a
gene body. From a medical perspective, it will be important to
determine the possible role of aberrant nucleosome positioning
as caused by disease-associated SNPs, insertions, deletions,
and translocations.
Our understanding of the regulation of nucleosome positioning

came from studies of smaller genomes, such as those in yeast
and fly (Jiang and Pugh, 2009). Nucleosome positioning along
DNA is influenced by favorable DNA sequence composition,
the actions of ATP-dependent nucleosome remodelers, and
strongly positioned nucleosomes (Mavrich et al., 2008; Narlikar
et al., 2013; Yuan et al., 2005). Although we understand the
main determinants of nucleosome positioning, the exact contri-
bution of each is unclear and currently under debate.
The most common method for profiling genome-wide

nucleosome positioning is microcococal nuclease digestion of

Table 3. Distinctive Chromatin Features of Genomic Elements

Functional Annotation Histone Marks References

Promoters H3K4me3 Bernstein et al., 2005; Kim et al., 2005; Pokholok

et al., 2005

Bivalent/Poised Promoter H3K4me3/H3K27me3 Bernstein et al., 2006

Transcribed Gene Body H3K36me3 Barski et al., 2007

Enhancer (both active and poised) H3K4me1 Heintzman et al., 2007

Poised Developmental Enhancer H3K4me1/H3K27me3 Creyghton et al., 2010; Rada-Iglesias et al., 2011

Active Enhancer H3K4me1/H3K27ac Creyghton et al., 2010; Heintzman et al., 2009;

Rada-Iglesias et al., 2011

Polycomb Repressed Regions H3K27me3 Bernstein et al., 2006; Lee et al., 2006

Heterochromatin H3K9me3 Mikkelsen et al., 2007

44 Cell 155, September 26, 2013 ª2013 Elsevier Inc.
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survey DNA enrichment at !500 representative loci using the
nCounter probe system. High-quality antibodies are distinct
from IgG patterns and the occupancy distribution correlates
with a logical set of chromatin states. Validating antibody re-
agents for enrichment specificity and robustness ensures good
quality ChIP-seq data sets with high signal to noise ratios.

Given that ChIP-seq is a mature technology, the technical
restrictions of the technique are well defined by its users. These
restrictions include the need for large amounts of starting mate-
rial, limited resolution, and the dependence on antibodies.
Improvements to ChIP-seq have been developed to address
these limitations and expand the possibilities of its use. Collect-
ing enough starting material for ChIP-seq can be challenging
because experiments typically require 1 million (histone modifi-
cations) to 5million (TFs and chromatinmodifiers) cells. Although
this is feasible when studying fast dividing cell lines, the chal-
lenge arises when studying primary cells and rare populations
such as cancer stem cells or progenitor cells. ChIP-seq samples
of 50,000 cells or less are possible with the ChIP-nano protocol
(Adli and Bernstein, 2011). Key method modifications achieve
effective chromatin fragmentation in small volumes, ensure
minimal sample handling and loss by washing samples in col-
umns, and reduce background signal. Another procedure, called
ChIP-exo, improves the limited resolution from fragmentation
heterogeneity after chromatin is prepared by sonication (Rhee
and Pugh, 2011). As its name suggests, sonicated and immuno-
precipitated DNA is treated with a 50-to-30 exonuclease to digest
DNA to the footprint of the crosslinked protein such that
sequencing results are nucleotide resolution. This type of high-
resolution protein-binding data is most beneficial for uncovering
motifs of specific binding proteins and the effect of sequence
variants on protein-binding affinity. Profiling genome-wide
DNA-protein interactions with ChIP-seq is technically chal-
lenging when studying novel proteins or protein isoforms, such
as a histone variant, that lacks a robust or specific antibody.
In this case, an obvious approach is to transiently or stably ex-
press a protein of interest (POI) with a tag or epitope that can
be readily ChIP’ed. Controls are necessary to ensure the fusion
protein’s localization is not altered by nonendogenous expres-
sion levels, protein instability, steric inherence, or other effects
of the tag itself.

A ChIP step can be added to other genomic profiling ap-
proaches for integrated epigenomic profiling. First, two ChIP

steps in a row, or Sequential-ChIP-seq, can uncover histone
PTMs on the same molecule or chromatin-associated proteins
in the same complex. Several groups combined bisulfite
sequencing with ChIP giving rise to BisChIP-seq and ChIP-BS-
seq (Brinkman et al., 2012; Statham et al., 2012). Long-distance
DNA interactions mediated by a specific protein can be profiled
using chromatin interaction analysis by paired-end-tag
sequencing, or ChIA-PET (Fullwood et al., 2009). We anticipate
other inventive uses of ChIP technology to continue to uncover
undiscovered roles of histone modifications and histone variants
in transcriptional regulation.

Mapping of Chromatin Structures
Nucleosome Positioning
Moving up the hierarchy of genomic organization, we now look
beyond the DNA and histone modifications to the positioning
of nucleosomes along the genome. Our epigenome at its
most basic level is repeating units of 147 base pairs wrapped
1.7 times around each nucleosome with varying distances of
linker DNA between each unit. Even this extremely simplistic
model is complex because nucleosome positioning can both
inhibit and promote factor binding (Bell et al., 2011). First,
nucleosomes can be positioned to obstruct or reveal specific
DNA sequences. Second, becausemodifications on histone tails
serve as binding platforms for transcriptional regulators, nucleo-
some positioning regulates factor recruitment. And finally,
nucleosomes are suggested to inhibit transcription by slowing
progression of RNA polymerase II as it transcribes through a
gene body. From a medical perspective, it will be important to
determine the possible role of aberrant nucleosome positioning
as caused by disease-associated SNPs, insertions, deletions,
and translocations.
Our understanding of the regulation of nucleosome positioning

came from studies of smaller genomes, such as those in yeast
and fly (Jiang and Pugh, 2009). Nucleosome positioning along
DNA is influenced by favorable DNA sequence composition,
the actions of ATP-dependent nucleosome remodelers, and
strongly positioned nucleosomes (Mavrich et al., 2008; Narlikar
et al., 2013; Yuan et al., 2005). Although we understand the
main determinants of nucleosome positioning, the exact contri-
bution of each is unclear and currently under debate.
The most common method for profiling genome-wide

nucleosome positioning is microcococal nuclease digestion of

Table 3. Distinctive Chromatin Features of Genomic Elements

Functional Annotation Histone Marks References

Promoters H3K4me3 Bernstein et al., 2005; Kim et al., 2005; Pokholok

et al., 2005

Bivalent/Poised Promoter H3K4me3/H3K27me3 Bernstein et al., 2006

Transcribed Gene Body H3K36me3 Barski et al., 2007

Enhancer (both active and poised) H3K4me1 Heintzman et al., 2007

Poised Developmental Enhancer H3K4me1/H3K27me3 Creyghton et al., 2010; Rada-Iglesias et al., 2011

Active Enhancer H3K4me1/H3K27ac Creyghton et al., 2010; Heintzman et al., 2009;

Rada-Iglesias et al., 2011

Polycomb Repressed Regions H3K27me3 Bernstein et al., 2006; Lee et al., 2006

Heterochromatin H3K9me3 Mikkelsen et al., 2007

44 Cell 155, September 26, 2013 ª2013 Elsevier Inc.



H3K4me3/H3K27me3 Bivalent Domain

9

H3K4me3

H3K27me3

Repressed

Remained

InducedPoised

From: https://pubs.niaaa.nih.gov/publications/arcr351/77-85.htm



Correlation ≠ Causation

10



Transcription factors

11

nucleosome

histone



Transcription factors

12
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Characterization of transcription factors

• Structure: Effector domain and DNA binding domain(s)
• Function:

– Cell-type specific expression
– Binding DNA sequence (motif)
– Genome-wide binding sites
– Target genes
– Co-factors, etc.
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Many TFs exhibit tissue- and cell-type-specific 
expression patterns

14

well-established roles in early embryonic-cell-fate specification
and/or roles in themaintenance and differentiation of specialized
cell types (Bürglin, 2011; Dunwell and Holland, 2016).

Across all other TF families, half (49%) are tissue specific,
providing a clue as to their specific physiological functions.

Higher-resolution data—e.g., from single-cell RNA-seq, which
can resolve the different cell types that comprise tissues—
will almost certainly lead to a more refined view of the associ-
ations between TFs, cell identity, and the genes regulated by
the TFs.

Figure 4. Functional Properties of the Human Transcription Factors
(A) RNA-seq gene expression profiles for 1,554 human TFs across 37 human tissues (from the Human Tissue Atlas version 17 [Uhlén et al., 2015]), normalized by
row and column. Tissues and TFs are arranged using hierarchical clustering by Pearson correlation. Mean expression level indicates the mean pre-normalization
mRNA expression level of each TF (in TPM) across all tissues in which the TF was expressed (TPMR 1). For an interactive version of this panel, see http://www.
cell.com/cell/9995.
(B) TF gene set over-representation for human disease phenotypes (Köhler et al., 2014). y axis indicates the significance of the size of the intersection between the
set of human TFs and the indicated gene set. Values indicate the number of TFs in the gene set.
(C) Diseases with GWAS signal (p < 5x10!8) located proximal to TF-encoding genes. Loci containing multiple variants were restricted to the single most strongly
associated variant, and subsequently expanded to incorporate variants in strong linkage disequilibrium (LD) (r2 > 0.8) with this variant using Plink (Purcell et al.,
2007). The full set of genetic variants and sources for each disease are provided in Tables S3 and S4. Each resulting variant was assigned to its nearest gene,
creating a gene set for each disease. For each gene set, the significance of its overlap with the list of human TFs was estimated using the hypergeometric
distribution. p values were corrected using Bonferroni’s method. Values indicate the number of TF-encoding loci associated with the given disease.

660 Cell 172, February 8, 2018

Lambert et al. Cell 2018



Position weight matrix (PWM) representation of 
DNA sequence motifs
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Outline
• Epigenome: an overview
• ChIP-seq: measuring chromatin epigenome
• ChIP-seq data analysis
• Future perspective
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ChIP-seq: Profiling epigenomes with sequencing

17Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI) 
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Chromatin ImmunoPrecipitation (ChIP)
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Protein-DNA crosslinking in vivo (for TF)
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Chop the chromatin using sonication (TF) or 
micrococal nuclease (MNase) digestion (histone)

20



Specific factor-targeting antibody

21



Immunoprecipitation
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DNA purification
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PCR amplification and sequencing
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Detecting protein-DNA interactions in vivo: Distribution of RNA
polymerase on specific bacterial genes

(UV cross-linking/gene regulation/leucine operon/attenuation)

DAVID S. GILMOUR AND JOHN T. LiS
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853

Communicated by Norman Davidson, March 23, 1984

ABSTRACT We present an approach for determining the
in vivo distribution of a protein on specific segments of chro-
mosomal DNA. First, proteins are joined covalently to DNA by
irradiating intact cells with UV light. Second, these cells are
disrupted in detergent, and a specific protein is immunopreci-
pitated from the lysate. Third, the DNA that is covalently at-
tached to the protein in the precipitate is purified and assayed
by hybridization. To test this approach, we examine the cross-
linking in Escherichia coli of RNA polymerase to a constitu-
tively expressed, X cI gene, and to the uninduced and isopropyl
13D-thiogalactoside (IPTG)-induced lac operon. As expected,
the recovery of the constitutively expressed gene in the immu-
noprecipitate is dependent on the irradiation of cells and on
the addition of RNA polymerase antiserum. The recovery of
the Mac operon DNA also requires transcriptional activation
with IPTG prior to the cross-linking step. After these initial
tests, we examine the distribution of RNA polymerase on the
leucine operon of Salmonella in wild-type, attenuator mutant,
and promoter mutant strains. Our in vivo data are in complete
agreement with the predictions of the attenuation model of
regulation. From these and other experiments, we discuss the
resolution, sensitivity, and generality of these methods.

The structure and function of chromosomes depend on a
constellation of specific interactions between proteins and
nucleic acids. In prokaryotes, many specific protein-DNA
interactions have been defined in vitro and some have been
supported by genetic analyses. In eukaryotes such interac-
tions have been defined primarily by in vitro analyses using
transcription systems and DNA binding assays (1-3). How-
ever, the biological implications of in vitro studies alone
must be interpreted cautiously, because the conditions for
detecting specific protein-DNA binding in vitro necessarily
differ from those within intact cells. For example, the natu-
ral state of the DNA substrate (e.g., superhelical density and
chemical modification) and the contribution of additional
DNA-binding proteins are either poorly defined or un-
known.
Here, we describe and test an approach designed to identi-

fy specific protein-DNA interactions occurring in vivo by
using UV light to generate cross-links between protein and
DNA. Specific protein-DNA complexes are isolated by
immunoprecipitation with antiserum to a specific protein.
The cross-linked DNA that is coprecipitated is isolated and
characterized by hybridization assays. Although the ap-
proach presented should be general, this paper focuses on
the association of RNA polymerase with specific bacterial
genes. We chose this model system to develop this approach
for several reasons. First, UV light has been shown to in-
duce cross-links between RNA polymerase and T7 promoter
DNA in vitro, and these adducts can be immunoprecipitated
with anti-RNA polymerase antibody (4). Second, many

RNA polymerase molecules can be associated with an ac-
tively transcribed gene, thereby enhancing the probability of
generating a cross-link. Third, since regulatory mutations or
chemical inducers can modulate the amount of RNA poly-
merase associated with a gene, the specificity of the interac-
tions detected by our procedure can be rigorously tested.
Moreover, the transcription level of some genes will remain
unchanged, and these can serve as internal standards.

MATERIALS AND METHODS
Materials. Escherichia coli RNA polymerase had been pu-

rified as described (5). RNA polymerase antiserum was de-
rived from a rabbit that was immunized as described (6) ex-
cept 100 gg of purified RNA polymerase was used per injec-
tion. This antiserum immunoprecipitates the p and f3'
subunits of both E. coli and Salmonella RNA polymerase.
Protein A Sepharose (Pharmacia) was stored at 40C in 150
mM NaCl/50 mM Tris-HCl, pH 8.0/1 mM EDTA, and was
recycled after use by extensively washing with 50 mM
NaHCO3/1% NaDodSO4.

All plasmid DNAs were maintained in E. coli HB101. Sev-
eral of the plasmids are described elsewhere: pBGP120 (7),
pKK3535 (8), pCV12 (9), and PUC13 (10). Plasmid pLRI was
identical to pKB252 (11) except that Inds repressor mutant
replaced the wild-type repressor. Subclones leu 7.1 and leu
14.7 were the 2.3-kilobase (kb) EcoRI/Sal I and the 2.9-kb
Sal I/EcoRI fragments, respectively, from pCV12 and were
cloned in pUC13. Plasmid DNAs were prepared using the
alkaline procedure as described (12). Restriction fragments
from pKK3535, pLRI, and pPBG120 were electroeluted
from agarose gels as described (13).

Isolation of Protein-DNA Adducts. Cells were chilled on
ice for 5 min prior to irradiation and then transferred to dish-
es in which the depth of the medium did not exceed 0.5 cm.
These dishes were maintained on ice while the samples were
irradiated from above with an inverted transilluminator
(UV products Chromato-Vue transilluminator Model C-61)
whose filter had been removed. The transilluminator was
maintained at a distance of 10 cm from the surface, providing
a light intensity of 4 x 104 erg/cm2_sec (measured with a
YSI-Kettering Model 65 Radiometer). Cells were collected
by centrifugation at 10,000 x g for 15 min. The cell pellet
was resuspended in 800 dul of 50 mM Tris-HCl, pH 7.4/10
mM EDTA, and transferred to a 1.5-ml microfuge tube; 80 A.l
of 20% sarkosyl was added, and each sample on ice was son-
icated with a microtip sonicator for four 30-sec periods inter-
spersed with periods of cooling. Sonication decreases the av-
erage DNA size to 600 base pairs (bp). At this time, samples
could be frozen at -70'C for 1 or 2 days with no noticeable
effect on subsequent procedures. Each sample was diluted
to 0.5% sarkosyl with 50 mM Tris-HCl, pH 7.4/10 mM
EDTA, and centrifuged 5 min in an Eppendorf microfuge to
remove insoluble material. Antiserum was added to the solu-

Abbreviations: IPTG, isopropyl /3-D-thiogalactoside; kb, kilo-
base(s); bp, base pair(s).
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Some history: UV crosslinking (1984)
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Mapping PolycombRepressed Domains 
in the Bithorax Complex Using In Vivo 
Formaldehyde Cross-Linked Chromatin 
Valerlo Orlando and Renato Par0 
Zentrum fur Molekulare Biologie 
Universitat Heidelberg 
Im Neuenheimer Feld 282 
89120 Heidelberg 
Federal Republic of Germany 

Summary 

The Polycomb group (PC-G) proteins are responsible 
for keeping developmental regulators, like homeotic 
genes, stably and inheritably repressed during Dro- 
sophila development. Several similarities to a protein 
class involved In heterochromatln formation suggest 
that the PC-G exerts its function at the higher order 
chromatin level. Here we have mapped the distribution 
of the PC protein in the homeotic blthorax complex 
(BX-C) of Drosophila tlssueculturecells. We have elab- 
orated a method, based on the in vlvo formaldehyde 
cross-linking technique, that allows a substantial en- 
richment for PC-interacting sites by immunoprecipita- 
tion of the cross-linked chromatin with anti-PC antlbod- 
ies. We find that the PC protein quantitatively covers 
large regulatory regions of repressed 9X-C genes. 
Conversely, we find that the AbdominaCB gene is ac- 
tive in these cells and the region devoid of any bound 
PC protein. 

Introduction 

The process of pattern formation determine8 in each cell 
the fate it and its progenitors are going to follow in the 
developing body. In many organisms, homeotic genes 
were shown to play an important role in this process. 
Through their differential spatial distribution, they are re- 
sponsible for setting the identities of structures and ap- 
pendages along the anterior-posterior axis of the body 
(Lewis, 1978; reviewed by McGinnis and Krumlauf, 1992). 
To fulfill their determining function, homeotic genes need 
to be active throughout the developmental process and 
most probably also during adult life in those structures 
where cell proliferation continues beyond birth. Alterations 
in the activity of these genes at any time in development 
result in a change of fate, with the consequence of dra- 
matic perturbation8 of the body pattern. Mechanisms of 
“cellular memory” are therefore of fundamental impor- 
tance for a cell to remember and maintain its determined 
state. On the basis of their antipodal phenotypes, two 
classes of genes that are part of such a mechanism have 
been identified in Drosophila: the trithorax group (trx-G) 
(reviewed by Kennison, 1993) and the Polycomb group 
(PC-G) (reviewed by Paro, 1990). These two groups guar- 
antee the maintenance of, respectively, the active and the 
repressed state of the homeotic genes in the appropriate 
segments. They do not play any role in the establishment 
of a given expression pattern, but rather they fix a deter- 

mined state, dispensing the cell from reproducing at every 
generation the complexity of a particular regulatory cascade. 

The PC gene is the prototype member of the PC-G. As 
8hOWn by polytene chromosome immunostainings, PC en- 
codes a nuclear protein associated with more than 100 
loci in the genome, including the homeotic clusters of the 
Antennapedia (Antp) complex and bithorax complex 
(BX-C) (Zink and Paro, 1989). The PC protein was not found 
to bind DNA sequence specifically in vitro, not even to 
sequences for which the protein is otherwise targeted in 
vivo, such as the Antp promoter (Zink and Paro, 1989). 
Other member8 of the PC-G, like polyhomeotic and Poste- 
rior sex combs, have also been characterized, and al- 
though potential DNA-binding domains are present, these 
proteins, too, fail to bind DNA specifically in vitro (De Cam- 
illis et al., 1992; Rastelli et al., 1993). Thus, the ability of 
this class of proteins to bind specific genomic regions in 
vivo might involve the formation of higher order nucleopro- 
tein complexes, a level of complexity not easily reproduc- 
ible in vitro. Indeed, cytological and biochemical analysis 
showed that some PC-G proteins share the same binding 
sites on polytene chromosomes and that they are part of 
a large multimeric complex (Franke et al., 1992; Rastelli 
et al., 1993). 

An important feature of PC is the presence of a highly 
conserved protein motif spanning over 48 amino acid8 at 
the amino-terminal end, called the chromodomain (Paro 
and Hogness, 1991). This protein domain is also found in 
the heterochromatin-associated protein HP1 , encoded by 
the suppressor of position effect variegation, Su(vaf)205 
(Eissenberg et al., 1990). The identification of this con- 
served motif in both the PC protein and the HP1 protein was 
the first molecular link between aclassof genes involved in 
the stable repression of regulatory genes located in eu- 
chromatic regions (PC-G) and a class thought to be respon- 
sible for structuring and regulating heterochromatin (mod- 
ifiers of position effect variegation). This suggested that 
the mechanism of silencing the PC-regulated genes might 
be using heterochromatin-like structures (Paro and Hog- 
ness, 1991). Heterochromatin refers to regions of the in- 
terphasic nucleus at high chromatin density, with distinct 
physiological features such as late replication and little 
transcriptional activity. Position effect variegation is ob- 
served where heterochromatin exerts a strong cis-negative 
effect on euchromatic gene expression, i.e., when the 
chromosomal arrangement is altered by translocations or 
insertions (reviewed by Henikoff, 1990). This phenomenon 
seems to reflect the complex setup and architecture of 
heterochromatic structures. It has been proposed that the 
formation of heterochromatin relies on multimeric protein 
complexes that can, basically by a self-assembly process, 
package chromatin very tightly (Locke et al., 1988). Con- 
ceptually, this seems to be an attractive idea to explain the 
phenomenon of position effect variegation. Unfortunately, 
little molecular evidence has been accumulated so far to 
substantiate this view of heterochromatin formation, in 
particular how the dense packaging of large chromosomal 
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Genome-Wide Location and
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Understanding how DNA binding proteins control global gene expression and
chromosomal maintenance requires knowledge of the chromosomal locations
at which these proteins function in vivo. We developed a microarray method
that reveals the genome-wide location of DNA-bound proteins and used this
method to monitor binding of gene-specific transcription activators in yeast.
A combination of location and expression profiles was used to identify genes
whose expression is directly controlled by Gal4 and Ste12 as cells respond to
changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
location analysis will facilitate investigation of gene regulatory networks, gene
function, and genome maintenance.

Many proteins bind to specific sites in the ge-
nome to regulate genome expression and main-
tenance. Transcriptional activators, for exam-
ple, bind to specific promoter sequences and
recruit chromatin modifying complexes and the
transcription apparatus to initiate RNA synthe-
sis (1–3). The reprogramming of gene expres-
sion that occurs as cells move through the cell
cycle, or when cells sense changes in their
environment, is effected in part by changes in
the DNA binding status of transcriptional acti-
vators. Distinct DNA binding proteins are also
associated with origins of DNA replication,
centromeres, telomeres, and other sites, where
they regulate chromosome replication, conden-
sation, cohesion, and other aspects of genome
maintenance (4, 5). Our understanding of these
proteins and their functions is limited by our
knowledge of their binding sites in the genome.

The genome-wide location analysis method
we have developed allows protein-DNA inter-
actions to be monitored across the entire yeast
genome (6). The method combines a modified
chromatin immunoprecipitation (ChIP) proce-
dure, which has been previously used to study
protein-DNA interactions at a small number of

specific DNA sites (7), with DNA microarray
analysis. Briefly, cells were fixed with formal-
dehyde, harvested, and disrupted by sonication.
The DNA fragments cross-linked to a protein of
interest were enriched by immunoprecipitation
with a specific antibody. After reversal of the
cross-links, the enriched DNA was amplified
and labeled with a fluorescent dye (Cy5) with
the use of ligation-mediated–polymerase chain
reaction (LM-PCR). A sample of DNA that
was not enriched by immunoprecipitation was
subjected to LM-PCR in the presence of a
different fluorophore (Cy3), and both immuno-
precipitation (IP)-enriched and -unenriched
pools of labeled DNA were hybridized to a
single DNA microarray containing all yeast
intergenic sequences (Fig. 1). A single-array
error model (8) was adopted to handle noise
associated with low-intensity spots and to per-
mit a confidence estimate for binding (P value).
When independent samples of 1 ng of genomic
DNA were amplified with the LM-PCR meth-
od, signals for greater than 99.8% of genes were
essentially identical within the error range (P
value !10!3). The IP-enriched/unenriched ra-
tio of fluorescence intensity obtained from three
independent experiments was used with a
weighted average analysis method to calculate
the relative binding of the protein of interest to
each sequence represented on the array.

To investigate the accuracy of the genome-
wide location analysis method, we used it to
identify sites bound by the transcriptional acti-
vator Gal4 in the yeast genome. Gal4 activates
genes necessary for galactose metabolism and
is among the best characterized transcriptional
activators (1, 9). We found 10 genes to be
bound by Gal4 (P value !0.001) and induced

in galactose using our analysis criteria (Fig.
2A). These included seven genes previously
reported to be regulated by Gal4 (GAL1, GAL2,
GAL3, GAL7, GAL10, GAL80, and GCY1). The
MTH1, PCL10, and FUR4 genes were also
bound by Gal4 and activated in galactose. Each
of these results was confirmed by conventional
ChIP analysis (Fig. 2B) (6), and MTH1,
PCL10, and FUR4 activation in galactose was
found to be dependent on Gal4 (Fig. 2C). Both
microarray and conventional ChIP showed that
Gal4 binds to GAL1, GAL2, GAL3, and GAL10
promoters under glucose and galactose condi-
tions, but the binding was generally weaker in

1Whitehead Institute for Biomedical Research, Nine
Cambridge Center, Cambridge, MA 02142, USA. 2De-
partment of Biology, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA. 3Howard Hughes
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Fig. 1. The genome-wide location profiling
method. (A) Close-up of a scanned image of a
microarray containing DNA fragments repre-
senting 6361 intergenic regions of the yeast
genome. The arrow points to a spot where the
red intensity is over-represented, identifying a
region bound in vivo by the protein under
investigation. (B) Analysis of Cy3- and Cy5-
labeled DNA amplified from 1 ng of yeast
genomic DNA using a single-array error model
(8). The error model cutoffs for P values equal
to 10!3 and 10!5 are displayed. (C) Experimen-
tal design. For each factor, three independent
experiments were performed and each of the
three samples were analyzed individually using
a single-array error model. The average binding
ratio and associated P value from the triplicate
experiments were calculated using a weighted
average analysis method (6).
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changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
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Many proteins bind to specific sites in the ge-
nome to regulate genome expression and main-
tenance. Transcriptional activators, for exam-
ple, bind to specific promoter sequences and
recruit chromatin modifying complexes and the
transcription apparatus to initiate RNA synthe-
sis (1–3). The reprogramming of gene expres-
sion that occurs as cells move through the cell
cycle, or when cells sense changes in their
environment, is effected in part by changes in
the DNA binding status of transcriptional acti-
vators. Distinct DNA binding proteins are also
associated with origins of DNA replication,
centromeres, telomeres, and other sites, where
they regulate chromosome replication, conden-
sation, cohesion, and other aspects of genome
maintenance (4, 5). Our understanding of these
proteins and their functions is limited by our
knowledge of their binding sites in the genome.

The genome-wide location analysis method
we have developed allows protein-DNA inter-
actions to be monitored across the entire yeast
genome (6). The method combines a modified
chromatin immunoprecipitation (ChIP) proce-
dure, which has been previously used to study
protein-DNA interactions at a small number of

specific DNA sites (7), with DNA microarray
analysis. Briefly, cells were fixed with formal-
dehyde, harvested, and disrupted by sonication.
The DNA fragments cross-linked to a protein of
interest were enriched by immunoprecipitation
with a specific antibody. After reversal of the
cross-links, the enriched DNA was amplified
and labeled with a fluorescent dye (Cy5) with
the use of ligation-mediated–polymerase chain
reaction (LM-PCR). A sample of DNA that
was not enriched by immunoprecipitation was
subjected to LM-PCR in the presence of a
different fluorophore (Cy3), and both immuno-
precipitation (IP)-enriched and -unenriched
pools of labeled DNA were hybridized to a
single DNA microarray containing all yeast
intergenic sequences (Fig. 1). A single-array
error model (8) was adopted to handle noise
associated with low-intensity spots and to per-
mit a confidence estimate for binding (P value).
When independent samples of 1 ng of genomic
DNA were amplified with the LM-PCR meth-
od, signals for greater than 99.8% of genes were
essentially identical within the error range (P
value !10!3). The IP-enriched/unenriched ra-
tio of fluorescence intensity obtained from three
independent experiments was used with a
weighted average analysis method to calculate
the relative binding of the protein of interest to
each sequence represented on the array.

To investigate the accuracy of the genome-
wide location analysis method, we used it to
identify sites bound by the transcriptional acti-
vator Gal4 in the yeast genome. Gal4 activates
genes necessary for galactose metabolism and
is among the best characterized transcriptional
activators (1, 9). We found 10 genes to be
bound by Gal4 (P value !0.001) and induced

in galactose using our analysis criteria (Fig.
2A). These included seven genes previously
reported to be regulated by Gal4 (GAL1, GAL2,
GAL3, GAL7, GAL10, GAL80, and GCY1). The
MTH1, PCL10, and FUR4 genes were also
bound by Gal4 and activated in galactose. Each
of these results was confirmed by conventional
ChIP analysis (Fig. 2B) (6), and MTH1,
PCL10, and FUR4 activation in galactose was
found to be dependent on Gal4 (Fig. 2C). Both
microarray and conventional ChIP showed that
Gal4 binds to GAL1, GAL2, GAL3, and GAL10
promoters under glucose and galactose condi-
tions, but the binding was generally weaker in
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Fig. 1. The genome-wide location profiling
method. (A) Close-up of a scanned image of a
microarray containing DNA fragments repre-
senting 6361 intergenic regions of the yeast
genome. The arrow points to a spot where the
red intensity is over-represented, identifying a
region bound in vivo by the protein under
investigation. (B) Analysis of Cy3- and Cy5-
labeled DNA amplified from 1 ng of yeast
genomic DNA using a single-array error model
(8). The error model cutoffs for P values equal
to 10!3 and 10!5 are displayed. (C) Experimen-
tal design. For each factor, three independent
experiments were performed and each of the
three samples were analyzed individually using
a single-array error model. The average binding
ratio and associated P value from the triplicate
experiments were calculated using a weighted
average analysis method (6).
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Genome-Wide Location and
Function of DNA Binding

Proteins
Bing Ren,1* François Robert,1* John J. Wyrick,1,2*
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Understanding how DNA binding proteins control global gene expression and
chromosomal maintenance requires knowledge of the chromosomal locations
at which these proteins function in vivo. We developed a microarray method
that reveals the genome-wide location of DNA-bound proteins and used this
method to monitor binding of gene-specific transcription activators in yeast.
A combination of location and expression profiles was used to identify genes
whose expression is directly controlled by Gal4 and Ste12 as cells respond to
changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
location analysis will facilitate investigation of gene regulatory networks, gene
function, and genome maintenance.

Many proteins bind to specific sites in the ge-
nome to regulate genome expression and main-
tenance. Transcriptional activators, for exam-
ple, bind to specific promoter sequences and
recruit chromatin modifying complexes and the
transcription apparatus to initiate RNA synthe-
sis (1–3). The reprogramming of gene expres-
sion that occurs as cells move through the cell
cycle, or when cells sense changes in their
environment, is effected in part by changes in
the DNA binding status of transcriptional acti-
vators. Distinct DNA binding proteins are also
associated with origins of DNA replication,
centromeres, telomeres, and other sites, where
they regulate chromosome replication, conden-
sation, cohesion, and other aspects of genome
maintenance (4, 5). Our understanding of these
proteins and their functions is limited by our
knowledge of their binding sites in the genome.

The genome-wide location analysis method
we have developed allows protein-DNA inter-
actions to be monitored across the entire yeast
genome (6). The method combines a modified
chromatin immunoprecipitation (ChIP) proce-
dure, which has been previously used to study
protein-DNA interactions at a small number of

specific DNA sites (7), with DNA microarray
analysis. Briefly, cells were fixed with formal-
dehyde, harvested, and disrupted by sonication.
The DNA fragments cross-linked to a protein of
interest were enriched by immunoprecipitation
with a specific antibody. After reversal of the
cross-links, the enriched DNA was amplified
and labeled with a fluorescent dye (Cy5) with
the use of ligation-mediated–polymerase chain
reaction (LM-PCR). A sample of DNA that
was not enriched by immunoprecipitation was
subjected to LM-PCR in the presence of a
different fluorophore (Cy3), and both immuno-
precipitation (IP)-enriched and -unenriched
pools of labeled DNA were hybridized to a
single DNA microarray containing all yeast
intergenic sequences (Fig. 1). A single-array
error model (8) was adopted to handle noise
associated with low-intensity spots and to per-
mit a confidence estimate for binding (P value).
When independent samples of 1 ng of genomic
DNA were amplified with the LM-PCR meth-
od, signals for greater than 99.8% of genes were
essentially identical within the error range (P
value !10!3). The IP-enriched/unenriched ra-
tio of fluorescence intensity obtained from three
independent experiments was used with a
weighted average analysis method to calculate
the relative binding of the protein of interest to
each sequence represented on the array.

To investigate the accuracy of the genome-
wide location analysis method, we used it to
identify sites bound by the transcriptional acti-
vator Gal4 in the yeast genome. Gal4 activates
genes necessary for galactose metabolism and
is among the best characterized transcriptional
activators (1, 9). We found 10 genes to be
bound by Gal4 (P value !0.001) and induced

in galactose using our analysis criteria (Fig.
2A). These included seven genes previously
reported to be regulated by Gal4 (GAL1, GAL2,
GAL3, GAL7, GAL10, GAL80, and GCY1). The
MTH1, PCL10, and FUR4 genes were also
bound by Gal4 and activated in galactose. Each
of these results was confirmed by conventional
ChIP analysis (Fig. 2B) (6), and MTH1,
PCL10, and FUR4 activation in galactose was
found to be dependent on Gal4 (Fig. 2C). Both
microarray and conventional ChIP showed that
Gal4 binds to GAL1, GAL2, GAL3, and GAL10
promoters under glucose and galactose condi-
tions, but the binding was generally weaker in
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Fig. 1. The genome-wide location profiling
method. (A) Close-up of a scanned image of a
microarray containing DNA fragments repre-
senting 6361 intergenic regions of the yeast
genome. The arrow points to a spot where the
red intensity is over-represented, identifying a
region bound in vivo by the protein under
investigation. (B) Analysis of Cy3- and Cy5-
labeled DNA amplified from 1 ng of yeast
genomic DNA using a single-array error model
(8). The error model cutoffs for P values equal
to 10!3 and 10!5 are displayed. (C) Experimen-
tal design. For each factor, three independent
experiments were performed and each of the
three samples were analyzed individually using
a single-array error model. The average binding
ratio and associated P value from the triplicate
experiments were calculated using a weighted
average analysis method (6).
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High-Resolution Profiling of Histone
Methylations in the Human Genome
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SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase II, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histone mod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

INTRODUCTION

Eukaryotic DNA is packaged into a chromatin structure
consisting of repeating nucleosomes formed by wrapping
146 base pairs of DNA around an octamer of four core his-
tones (H2A, H2B, H3, and H4). The histones, particularly
their N-terminal tails, are subject to a large number of
posttranslational modifications (Kouzarides, 2007). His-
tone modifications are implicated in influencing gene ex-
pression and genome function by establishing global
chromatin environments and orchestrating DNA-based

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the ‘‘ChIP-
on-chip’’ technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 30 end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of histone acetylation and H3K4 methylation are detected
in promoter regions of active genes (Bernstein et al., 2005;
Kim et al., 2005; Roh et al., 2005, 2006), whereas elevated
levels of H3K27 methylation correlates with gene repres-
sion (Boyer et al., 2006; Lee et al., 2006; Roh et al.,
2006). In addition to the promoter regions, these modifica-
tions are also detected in intergenic regions as both
sharply localized peaks and wide-spread domains. The
H3 acetylation and H3K4me1 signals outside of promoter
regions have been correlated with functional enhancers in
various cell types (Heintzman et al., 2007; Roh et al., 2005;
Roh et al., 2007). The apparently opposite modifications,
H3K4me3 and H3K27me3, colocalize in regions termed

Cell 129, 823–837, May 18, 2007 ª2007 Elsevier Inc. 823

sponse in cutaneous CHS. The finding that
topical application of D9-THC reduced allergic
inflammation points to the promising potential of
developing pharmacological treatments (24) with
the use of selective CB receptor agonists or
FAAH inhibitors.
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Genome-Wide Mapping of in Vivo
Protein-DNA Interactions
David S. Johnson,1* Ali Mortazavi,2* Richard M. Myers,1† Barbara Wold2,3†

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a
gene network scaffold. To map these protein-DNA interactions comprehensively across entire
mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq)
based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then
used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for
repressor element–1 silencing transcription factor) to 1946 locations in the human genome. The
data display sharp resolution of binding position [±50 base pairs (bp)], which facilitated our
finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq
data also have high sensitivity and specificity [ROC (receiver operator characteristic)
area ≥ 0.96] and statistical confidence (P < 10−4), properties that were important for inferring new
candidate interactions. These include key transcription factors in the gene network that regulates
pancreatic islet cell development.

Although much is known about transcrip-
tion factor binding and action at specific
genes, far less is known about the com-

position and function of entire factor-DNA
interactomes, especially for organisms with large
genomes. Now that human, mouse, and other
large genomes have been sequenced, it is
possible, in principle, to measure how any
transcription factor is deployed across the entire
genome for a given cell type and physiological
condition. Such measurements are important for
systems-level studies because they provide a
global map of candidate gene network input
connections. These direct physical interactions
between transcription factors or cofactors and the

chromosome can be detected by chromatin
immunoprecipitation (ChIP) (1). In ChIP ex-
periments, an immune reagent specific for a
DNA binding factor is used to enrich target DNA
sites to which the factor was bound in the living
cell. The enriched DNA sites are then identified
and quantified.

For the gigabase-size genomes of vertebrates,
it has been difficult to make ChIP measurements
that combine high accuracy, whole-genome com-
pleteness, and high binding-site resolution. These
data-quality and depth issues dictate whether pri-
mary gene network structure can be inferred with
reasonable certainty and comprehensiveness, and
how effectively the data can be used to discover
binding-site motifs by computational methods.
For these purposes, statistical robustness, sam-
pling depth across the genome, absolute signal
and signal-to-noise ratio must be good enough
to detect nearly all in vivo binding locations for
a regulator with minimal inclusion of false-
positives. A further challenge in genomes large
or small is to map factor-binding sites with high
positional resolution. In addition to making com-

putational discovery of binding motifs feasible,
this dictates the quality of regulatory site anno-
tation relative to other gene anatomy landmarks,
such as transcription start sites, enhancers, introns
and exons, and conserved noncoding features
(2). Finally, if high-quality protein-DNA inter-
actome measurements can be performed rou-
tinely and at reasonable cost, it will open the
way to detailed studies of interactome dynam-
ics in response to specific signaling stimuli or
genetic mutations. To address these issues, we
turned to ultrahigh-throughput DNA sequenc-
ing to gain sampling power and applied size
selection on immuno-enriched DNA to enhance
positional resolution.

The ChIPSeq assay shown here differs
from other large-scale ChIP methods such as
ChIPArray, also called ChIPchip (1); ChIPSAGE
(SACO) (3); or ChIPPet (4) in design, data
produced, and cost. The design is simple (Fig.
1A) and, unlike SACO or ChIPPet, it involves no
plasmid library construction. Unlike microarray
assays, the vast majority of single-copy sites in
the genome is accessible for ChIPSeq assay (5),
rather than a subset selected to be array features.
For example, to sample with similar complete-
ness by an Affymetrix-style microarray design, a
nucleotide-by-nucleotide sliding window design
of roughly 1 billion features per array would be
needed for the nonrepeat portion of the human
genome. In addition, ChIPSeq counts sequences
and so avoids constraints imposed by array
hybridization chemistry, such as base composition
constraints related to Tm, the temperature at which
50% of double-stranded DNA or DNA-RNA
hybrids is denatured; cross-hybridization; and
secondary structure interference. Finally, ChIPSeq
is feasible for any sequenced genome, rather than
being restricted to species for which whole-
genome tiling arrays have been produced.

ChIPSeq illustrates the power of new se-
quencing platforms, such as those from Solexa/
Illumina and 454, to perform sequence census
counting assays. The generic task in these appli-
cations is to identify and quantify the molecular
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Translational and rotational settings of H2A.Z
nucleosomes across the Saccharomyces
cerevisiae genome
Istvan Albert1, Travis N. Mavrich1,2, Lynn P. Tomsho1, Ji Qi1, Sara J. Zanton1,2, Stephan C. Schuster1

& B. Franklin Pugh1,2

The nucleosome is the fundamental building block of eukaryotic
chromosomes. Access to genetic information encoded in chromo-
somes is dependent on the position of nucleosomes along the DNA.
Alternative locations just a few nucleotides apart can have pro-
found effects on gene expression1. Yet the nucleosomal context in
which chromosomal and gene regulatory elements reside remains
ill-defined on a genomic scale. Here we sequence the DNA of
322,000 individual Saccharomyces cerevisiae nucleosomes, con-
taining the histone variant H2A.Z, to provide a comprehensive
map of H2A.Z nucleosomes in functionally important regions.
With a median 4-base-pair resolution, we identify new and estab-
lished signatures of nucleosome positioning. A single predominant
rotational setting and multiple translational settings are evident.
Chromosomal elements, ranging from telomeres to centromeres
and transcriptional units, are found to possess characteristic nu-
cleosomal architecture that may be important for their function.
Promoter regulatory elements, including transcription factor bind-
ing sites and transcriptional start sites, show topological relation-
ships with nucleosomes, such that transcription factor binding
sites tend to be rotationally exposed on the nucleosome surface
near its border. Transcriptional start sites tended to reside about
one helical turn inside the nucleosome border. These findings
reveal an intimate relationship between chromatin architecture
and the underlying DNA sequence it regulates.

Chromatin is composed of repeating units of nucleosomes in which
,147 base pairs (bp) of DNA is wrapped ,1.7 times around the

exterior of a histone protein complex2. A nucleosome has two fun-
damental relationships with its DNA3. A translational setting defines a
nucleosomal midpoint relative to a given DNA locus. A rotational
setting defines the orientation of DNA helix on the histone surface.
Thus, DNA regulatory elements may reside in linker regions between
nucleosomes or along the nucleosome surface, where they may face
inward (potentially inaccessible) or outward (potentially accessible).
Recent discoveries of nucleosome positioning sequences throughout
the S. cerevisiae (yeast) genome suggest that nucleosome locations are
partly defined by the underlying DNA sequence4,5. Indeed, a tendency
of AA/TT dinucleotides to recur in 10-bp intervals and in counter-
phase with GC dinucleotides generates a curved DNA structure that
favours nucleosome formation3. Genome-wide maps of nucleosome
locations have been generated6,7, but not at a resolution that would
define translational and rotational settings. To acquire a better under-
standing of how genes are regulated by nucleosome positioning,
we isolated and sequenced H2A.Z-containing nucleosomes from S.
cerevisiae. Such nucleosomes are enriched at promoter regions8–11, and
thus maximum coverage of relevant regions can be achieved with
fewer sequencing runs. With this high resolution map we sought to
address the following questions: (1) what are the DNA signatures of
nucleosome positioning in vivo? (2) How many translational and
rotational settings do nucleosomes occupy? (3) Do chromosomal
elements possess specific chromatin architecture? (4) What is the
topological relationship between the location of promoter elements
and the rotational and translational setting of nucleosomes?

1Center for Comparative Genomics and Bioinformatics, 2Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University
Park, Pennsylvania 16802, USA.
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Figure 1 | Distribution of H2A.Z nucleosomal DNA at an arbitrary region of
the yeast genome. Any region of the genome can be viewed in this way at
http://nucleosomes.sysbio.bx.psu.edu. An enlarged view of a peak is shown
in the inset, where each vertical bar corresponds to the number of

sequencing reads located at individual chromosomal coordinates. The
locations of ORFs are shown below the peaks. Additional browser shots are
shown in Supplementary Fig. 1.
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User Supplied Track

@ILLUMINA-8879DC:231:KK:3:1:1070:945 1:Y:0:
NNNAATACAGTCAGAAACATATCATATTGGAGAATA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1153:945 1:Y:0:
NNNAAGCACACAGAAGATAACTAAACAATCAAGTAG
####################################
@ILLUMINA-8879DC:231:KK:3:1:1222:945 1:Y:0:
NNNAAGGGTCTTGAGAAGAAATCATTCTGGATGGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1304:939 1:Y:0:
NNNCCAGGCTCCCGCGATTCTCCTGCCTCAGCTTCT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1354:945 1:Y:0:
NNNCTCTTCCTTAGCTAAACTTTCAACTAAGCCAAA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1411:932 1:Y:0:
NNNGTAGGACCATTGGCGTTGCGACACAAAAAATTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1496:937 1:Y:0:
NNNTTCATCGGGTTGAGAGTCCCCTTGTTGCATGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1533:939 1:Y:0:
NNNATTTTCCCGTTCCAGGTCGCAATTTCCGCCGTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1573:940 1:Y:0:
NNNGGGGTGCGCCTTTAGTCCCAGCTACTCAGGAAC
####################################



ChIP-seq data analysis overview

• Where in the genome do these sequence reads come from? - Sequence 
alignment and quality control 

• What does the enrichment of sequences mean?  - Peak calling
• What can we learn from these data? – Downstream analysis and integration 
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ChIP-seq data analysis: basic processing 

• alignment of each sequence read: bowtie2, BWA (Burrows–Wheeler Algorithm)

• redundancy control:

36

cannot map to the reference genome
can map to multiple loci in the genome
can map to a unique location in the genome

✗
✗
✔

✔ Langmead et al. 2009, 
Zang et al. 2009



• pile-up profiling

• Peak/signal 
detection

ChIP-seq data analysis: Peak calling

• DNA fragment size estimation 
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Original algorithm of MACS 
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ChIP-seq data analysis: Peak calling

• Sharp peaks
transcription factor binding, DNase/ATAC-seq

MACS (Zhang et al, Genome Bio 2008)
dynamic background
Poisson model

38

• Broad peaks 
Histone modifications,
“super-enhancers”
Diffuse signal

SICER (Zang et al, Bioinformatics 2009)
Spatial clustering of localized weak 
signal and integrative Poisson model

Wang, Zang et al. 2014

NOTCH1

H3K27ac



MACS
• Model-based Analysis for ChIP-Seq
• Tag distribution along the genome ~ Poisson distribution (λBG= total tag / genome 

size)
• ChIP-seq show local biases in the genome

– Chromatin and sequencing bias
– 200-300bp control windows have to few tags
– But can look further

Dynamic λlocal = 
max(λBG, [λctrl, λ1k,] λ5k, λ10k)

ChIP

Control
300bp
1kb
5kb
10kb

Zhang et al, Genome Bio, 2008



SICER
• Spatial-clustering Identification of ChIP-Enriched Regions

40

Zang et al. Bioinformatics 2009

10kb

5kb



ChIP-seq peak calling: Parameters

Parameter Remarks

Genome Species and reference genome version, e.g. hg38, hg19, 
mm10, mm9

Effective genome size/fraction Fraction of the mappable genome, vary in species, read 
length, etc.

DNA fragment size Estimated by default; can specify otherwise

Window size Data resolution, usually nucleosome periodicity length, 
i.e. 200bp

Gap size (for SICER only) Allowable gaps between eligible 
windows, usually 2 or 3 windows

P-value cut-off Threshold for peak calling, from model
False discovery rate (FDR) cut-off Threshold for peak calling, BH correction from p-value. 
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Data formats
• fastq: raw sequences

• BED:
chr11 10344210 10344260 255 0 -
chr4 76649430 76649480 255 0 +
chr3 77858754 77858804 255 0 +
chr16 62688333 62688383 255 0 +
chr22 33031123 33031173 255 0 -

• SAM/BAM: aligned sequencing reads

• bedGraph, Wig, bigWig: pile-up profiles for browser visualization
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Data flow

43

Raw
sequence

reads
• fastq

Aligned 
reads • BAM/BED

Profile;
Peaks

• bedGraph/Wig/bigWig

• BED
MACS/SICER

Bowtie/BWA
Reference genome

QC measures:

• Sequence quality (fastqc)

• Mapping quality (uniquely mapped ratio)

• Library complexity (PBC)

• ChIP enrichment
• Signal/Noise (FRIP score)
• Regulatory annotation



44

Ex
pe

rim
en

ta
l p

ro
ce

du
re
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Mapped reads (sam/bam/bed)
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Pile-up for visualization 
(bedGraph, wig, bigwig)
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Biology



ChIP-seq data analysis: Review

1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
1. QC
2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation
4. Peak/signal detection

3. Downstream analysis/integration
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Galaxy: web-interface analysis platform
• https://usegalaxy.org/

46

https://usegalaxy.org/


Run MACS on Cistrome, a Galaxy-based platform
• http://cistrome.org/ap/
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http://cistrome.org/ap/


SICER2
• https://zanglab.github.io/SICER2/

48

Jin Yong (Jeffrey) Yoo 2020

http://services.cbib.u-bordeaux.fr/galaxy/


ChIP-seq: Downstream analyses

• Data visualization
– UCSC genome browser: http://genome.ucsc.edu/
– WashU epigenome browser: http://epigenomegateway.wustl.edu/
– IGV: http://software.broadinstitute.org/software/igv/

• Integration with gene expression
– BETA: http://cistrome.org/BETA/

• Integration with other epigenomic data
– BART: http://bartweb.org/
– MARGE: http://cistrome.org/MARGE/
– GREAT: http://great.stanford.edu
– ENCODE SCREEN: http://screen.umassmed.edu/
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http://genome.ucsc.edu/
http://epigenomegateway.wustl.edu/
http://software.broadinstitute.org/software/igv/
http://cistrome.org/BETA/
http://cistrome.org/MARGE/
http://cistrome.org/MARGE/
http://great.stanford.edu/
http://screen.umassmed.edu/


ENCODE
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https://www.encodeproject.org/

https://www.encodeproject.org/


Cistrome Data Browser
http://cistrome.org/db/
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Mei et al. Nucleic Acids Res. 2017
Zheng et al. Nucleic Acids Res. 2018

http://cistrome.org/db/


BART: TF prediction using public ChIP-seq data

Gene list

ChIP-seq

Region set

Hi-C

>12,000 TF ChIP-seq datasets

Cis-regulatory profile

Adaptive Lasso regression

BART: Binding Analysis for Regulation of Transcription

Mapping

differential 
interaction

ROC associations

Statistical tests,
Background adjustment,
Rank integration Cis-regulatory element 

repertoire
(2.7 million in the human 
genome, 1.5 million in 
mouse)

>700 H3K27ac ChIP-seq

User input

Output prediction

Rank of all TFs

http://bartweb.org

Wang et al., Bioinformatics 2018
Wang et al., Bioinformatics 2021

Ma and Wang et al., NAR Genomics and Bioinformatics 2021

http://bartweb.uvasomrc.io/


ChIP-seq data analysis: Review

1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
1. QC
2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation
4. Peak/signal detection

3. Downstream analysis/integration
4. Take advantage of public resources
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Future Perspectives
• Limitation of ChIP-seq:

• Dependent on antibody availability and quality
• Semi-quantitative: does not detect global change
• Needs many cells – difficult for clinical samples
• Cellular heterogeneity

• Other techniques:
• ChIP-exo (Rhee & Pugh, Cell 2011)
• ChIP-nexus (He,…, Zeitlinger, Nature Biotechnology 2015)
• ChIPmentation (Schmidl,…, Boch, Nature Methods 2015)
• CUT&RUN and CUT&Tag (Henikoff Lab, eLife 2017, Nat Commun 2019) 

• Single-cell genomics assays and spatial genomics assays
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Summary
• Transcription factors and histone modifications are two 

groups of functionally important factors in the epigenome.
• ChIP-seq is used to profile protein-DNA interaction 

information in the epigenome
• ChIP-seq data analysis

• MACS for narrow peaks
• SICER for broad peaks

• Online tools and resources
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Thank you very much! 

zang@virginia.edu
zanglab.org
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mailto:zang@virginia.edu
http://zanglab.com/

