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The epigenome is a multitude of chemical compounds that can tell the genome what
to do. The epigenome is made up of chemical compounds and proteins that can
attach to DNA and direct such actions as turning genes on or off, controlling the
production of proteins in particular cells. -- from genome.gov

Original figure from ENCODE, Darryl Leja (NHGRI), lan Dunham (EBI)



Marks of the epigenome

DNA methylation

Histone marks
— Covalent modifications
— Histone variants

Transcription factors

Chromatin regulators
— Histone modifying enzymes: writers, readers, erasers
— Chromatin remodeling complexes (e.g., SWI/SNF)



Histone modifications

Nucleosome Core Particles

: Notation:
Core Histones: H2A, H2B, H3, H4 H3K4me3
Covalent modifications on histone
tails include:
methylation (me), = P e s
. o { K8 ! Histone H4
acetylation (ac), Histone H3 e
ubiquitylation, ...

Histone variants: H2A.Z, H3.3, ...

Histone modifications are
implicated in influencing gene
expression.

Allis C. et al. Epigenetics 2006



Histone modification patterns around genes
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Functional annotation of common histone marks

Functional Annotation Histone Marks
Promoters H3K4me3
Bivalent/Poised Promoter H3K4me3/H3K27me3
Transcribed Gene Body H3K36me3

Enhancer (both active and poised) H3K4me1

Poised Developmental Enhancer H3K4me1/H3K27me3
Active Enhancer H3K4me1/H3K27ac
Polycomb Repressed Regions H3K27me3
Heterochromatin H3K9me3

Rivera & Ren Cell2013



H3K4me3/H3K27me3 Bivalent Domain
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From: https://pubs.niaaa.nih.gov/publications/arcr351/77-85.htm
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Correlation # Causation
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Transcription factors

.. \

Hypersensitive h | stone
Sites /

' CHaCO CH3

RNA polymerase

12



DNA-binding domain(s)

Recognize specific DNA
sequences and sites

Transcription factors

Can regulate TF activity
e.g. ligand binding domains

:1.
-
-

Can mediate protein-protein interactions
e.g. BTB domain

Can have enzymatic activities
e.g. SET domain

Lambertet al. Cell2018
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Many TFs exhibit tissue- and cell-type-specific expression patterns
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TF gene set-associated disease phenotypes

Anterior pituitary hypoplasia ]
Abnormality of cardiovascular system morphology
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Characterization of transcription factors

» Structure: Effector domain and DNA binding domain(s)

* Function:
— Cell-type specific expression
— Binding DNA sequence (motif)
— Genome-wide binding sites
— Target genes
— Co-factors, etc.



Position weight matrix (PWM) representation of DNA sequence motifs
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ChIP-seq: Profiling epigenomes with sequencing
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Original figure from ENCODE, Darryl Leja (NHGRI), lan Dunham (EBI)
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Chromatin ImmunoPrecipitation (ChiP)
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Protein-DNA crosslinking in vivo (for TF)




Chop the chromatin using sonication (TF) or micrococal
nuclease (MNase) digestion (histone)
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Specific factor-targeting antibody
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Immunoprecipitation
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DNA purification
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PCR amplification and sequencing
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Proc. Natl. Acad. Sci. USA
Vol. 81, pp. 4275-4279, July 1984
Biochemistry

Some history: UV crosslinking (1984)

Detecting protein—-DNA interactions in vive: Distribution of RNA
polymerase on specific bacterial genes

(UYV cross-linking/gene regulation/leucine operon/attenuation)

Davibp S. GIiLMOUR AND JOHN T. Li1s

Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853

Communicated by Norman Davidson, March 23, 1984

ABSTRACT We present an approach for determining the
in vivo distribution of a protein on specific segments of chro-
mosomal DNA. First, proteins are joined covalently to DNA by
irradiating intact cells with UV light. Second, these cells are
disrupted in detergent, and a specific protein is immunopreci-
pitated from the lysate. Third, the DNA that is covalently at-
tached to the protein in the precipitate is purified and assayed
by hybridization. To test this approach, we examine the cross-
linking in Escherichia coli of RNA polymerase to a constitu-
tively expressed, A cI gene, and to the uninduced and isopropy!
p-p-thiogalactoside (IPTG)-induced lac operon. As expected,
the recovery of the constitutively expressed gene in the immu-
noprecipitate is dependent on the irradiation of cells and on
the addition of RNA polymerase antiserum. The recovery of
the lac operon DNA also requires transcriptional activation
with IPTG prior to the cross-linking step. After these initial
tests, we examine the distribution of RNA polymerase on the
leucine operon of Salmonella in wild-type, attenuator mutant,
and promoter mutant strains. Qur in vivo data are in complete
agreement with the predictions of the attenuation model of
regulation. From these and other experiments, we discuss the
resolution, sensitivity, and generality of these methods.

RNA polymerase molecules can be associated with an ac-
tively transcribed gene, thereby enhancing the probability of
generating a cross-link. Third, since regulatory mutations or
chemical inducers can modulate the amount of RNA poly-
merase associated with a gene, the specificity of the interac-
tions detected by our procedure can be rigorously tested.
Moreover, the transcription level of some genes will remain
unchanged, and these can serve as internal standards.

MATERIALS AND METHODS

Materials. Escherichia coli RN A polymerase had been pu-
rified as described (5). RNA polymerase antiserum was de-
rived from a rabbit that was immunized as described (6) ex-
cept 100 ug of purified RNA polymerase was used per injec-
tion. This antiserum immunoprecipitates the g8 and g’
subunits of both E. coli and Salmonella RNA polymerase.
Protein A Sepharose (Pharmacia) was stored at 4°C in 150
mM NaCl/50 mM Tris'HCI, pH 8.0/1 mM EDTA, and was
recycled after use by extensively washing with 50 mM
NaHCO;/1% NaDodSO,.

All plasmid DNAs were maintained in E. coli HB101. Sev-
eral of the plasmids are described elsewhere: pBGP120 (7),
pKK3535 (8). bCV12 (9). and PUC13 (10). Plasmid oLRI was



Crosslinking +

immunoprecipitation (1993)

Cell, Vol. 75, 1187-1198, December 17, 1993, Copyright © 1993 by Cell Press

Mapping Polycomb-Repressed Domains
in the Bithorax Complex Using In Vivo
Formaldehyde Cross-Linked Chromatin

Valerio Orlando and Renato Paro
Zentrum fiir Molekulare Biologie
Universitat Heidelberg

Im Neuenheimer Feld 282

69120 Heidelberg

Federal Republic of Germany

Summary

The Polycomb group (Pc-G) proteins are responsible
for keeping developmental regulators, like homeotic
genes, stably and inheritably repressed during Dro-
sophila development. Several similarities to a protein
class involved In heterochromatin formation suggest
that the Pc-G exerts its function at the higher order
chromatin level. Here we have mapped the distribution
of the Pc protein in the homeotic bithorax complex
(BX-C) of Drosophila tissue culture cells. We have elab-
orated a method, based on the in vivo formaldehyde
cross-linking technique, that allows a substantial en-
richment for Pc-interacting sites by immunoprecipita-
tion of the cross-linked chromatin with anti-Pc antibod-
ies. We find that the Pc protein quantitatively covers
large regulatory regions of repressed BX-C genes.
Conversely, we find that the Abdominal-B gene is ac-
tive in these cells and the region devoid of any bound
Pc protein.

mined state, dispensing the cell from reproducing at every
generation the complexity of a particular regulatory cascade.

The Pc gene is the prototype member of the Pc-G. As
shown by polytene chromosome immunostainings, Pc en-
codes a nuclear protein associated with more than 100
loci in the genome, including the homeotic clusters of the
Antennapedia (Antp) complex and bithorax complex
(BX-C) (Zink and Paro, 1989). The Pc protein was not found
to bind DNA sequence specifically in vitro, not even to
sequences for which the protein is otherwise targeted in
vivo, such as the Antp promoter (Zink and Paro, 1989).
Other members of the Pc-G, like polyhomeotic and Poste-
rior sex combs, have also been characterized, and al-
though potential DNA-binding domains are present, these
proteins, too, fail to bind DNA specifically in vitro (De Cam-
illis et al., 1992; Rastelli et al., 1993). Thus, the ability of
this class of proteins to bind specific genomic regions in
vivo might involve the formation of higher order nucleopro-
tein complexes, a level of complexity not easily reproduc-
ible in vitro. Indeed, cytological and biochemical analysis
showed that some Pc-G proteins share the same binding
sites on polytene chromosomes and that they are part of
a large multimeric complex (Franke et al., 1992; Rastelli
et al., 1993).

An important feature of Pc is the presence of a highly
conserved protein motif spanning over 48 amino acids at
the amino-terminal end, called the chromodomain (Paro
and Hogness, 1991). This protein domain is also found in
the heterochromatin-associated protein HP1, encoded by
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ChIP-chip (2000)

REPORTS

Genome-Wide Location and
Function of DNA Binding
Proteins

Bing Ren,’* Francois Robert,’* John ). Wyrick,?*
Oscar Aparicio,>* Ezra G. Jennings,"? Itamar Simon,’
Julia Zeitlinger,? Jérg Schreiber,’ Nancy Hannett,’
Elenita Kanin," Thomas L. Volkert,! Christopher J. Wilson,>
Stephen P. Bell,?? Richard A. Young'?}

Understanding how DNA binding proteins control global gene expression and
chromosomal maintenance requires knowledge of the chromosomal locations
at which these proteins function in vivo. We developed a microarray method
that reveals the genome-wide location of DNA-bound proteins and used this
method to monitor binding of gene-specific transcription activators in yeast.
A combination of location and expression profiles was used to identify genes
whose expression is directly controlled by Gal4 and Ste12 as cells respond to
changes in carbon source and mating pheromone, respectively. The results
identify pathways that are coordinately regulated by each of the two activators
and reveal previously unknown functions for Gal4 and Ste12. Genome-wide
location analysis will facilitate investigation of gene regulatory networks, gene
function, and genome maintenance.

2306 22 DECEMBER 2000 VOL 290 SCIENCE
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ChiP-seq (2007)

High-Resolution Profiling of Histone
Methylations in the Human Genome

Artem Barski,"® Suresh Cuddapah,’-® Kairong Cui,'”® Tae-Young Roh,"® Dustin E. Schones,"® Zhibin Wang,'"®

Gang Wei,"® louri Chepelev,? and Keji Zhao'"*

1 Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
2Department of Human Genetics, Gonda Neuroscience and Genetics Research Center, University of California, Los Angeles,

Los Angeles, CA 90095, USA

3These authors contributed equally to this work and are listed alphabetically.

*Correspondence: zhaok@nhlbi.nih.gov
DOI 10.1016/j.cell.2007.05.009

SUMMARY

Histone modifications are implicated in influ-
encing gene expression. We have generated
high-resolution maps for the genome-wide
distribution of 20 histone lysine and arginine
methylations as well as histone variant H2A.Z,
RNA polymerase Il, and the insulator binding
protein CTCF across the human genome using
the Solexa 1G sequencing technology. Typical
patterns of histone methylations exhibited
at promoters, insulators, enhancers, and tran-
scribed regions are identified. The mono-
methylations of H3K27, H3K9, H4K20, H3K79,
and H2BK5 are all linked to gene activation,
whereas trimethylations of H3K27, H3K9, and
H3K79 are linked to repression. H2A.Z associ-
ates with functional regulatory elements, and
CTCF marks boundaries of histone methylation
domains. Chromosome banding patterns are
correlated with unique patterns of histone mod-
ifications. Chromosome breakpoints detected
in T cell cancers frequently reside in chromatin
regions associated with H3K4 methylations.
Our data provide new insights into the function
of histone methylation and chromatin organiza-
tion in genome function.

biological processes. Among the various modifications,
histone methylations at lysine and arginine residues are
relatively stable and are therefore considered potential
marks for carrying the epigenetic information that is stable
through cell divisions. Indeed, enzymes that catalyze the
methylation reaction have been implicated in playing crit-
ical roles in development and pathological processes.

Remarkable progress has been made during the past
few years in the characterization of histone modifications
on a genome-wide scale. The main driving force has
been the development and improvement of the “ChlIP-
on-chip” technique by combining chromatin immunopre-
cipitation (ChIP) and DNA-microarray analysis (chip). With
almost complete coverage of the yeast genome on DNA
microarrays, its histone modification patterns have been
extensively studied. The general picture emerging from
these studies is that promoter regions of active genes
have reduced nucleosome occupancy and elevated his-
tone acetylation (Bernstein et al., 2002, 2004; Lee et al.,
2004; Liu et al., 2005; Pokholok et al., 2005; Sekinger
et al., 2005; Yuan et al., 2005). High levels of H3K4me1,
H3K4me2, and H3K4me3 are detected surrounding tran-
scription start sites (TSSs), whereas H3K36me3 peaks
near the 3’ end of genes.

Significant progress has also been made in characteriz-
ing global levels of histone modifications in mammals.
Several large-scale studies have revealed interesting in-
sights into the complex relationship between gene ex-
pression and histone modifications. Generally, high levels
of hietone acetviation and HRK4 methvlation are detected

Genome-Wide Mapping of in Vivo
Protein-DNA Interactions

David S. Johnson,** Ali Mortazavi,?* Richard M. Myers,*t Barbara Wold>>t

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a
gene network scaffold. To map these protein-DNA interactions comprehensively across entire
mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq)
based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then
used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for
repressor element—1 silencing transcription factor) to 1946 locations in the human genome. The
data display sharp resolution of binding position [+50 base pairs (bp)], which facilitated our
finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq

data also have high sensitivity and specificity [ROC (receiver operator characteristic)

area > 0.96] and statistical confidence (P < 107*), properties that were important for inferring new
candidate interactions. These include key transcription factors in the gene network that regulates

pancreatic islet cell development.

Ithough much is known about transcrip-
Ation factor binding and action at specific

genes, far less is known about the com-
position and function of entire factor-DNA
interactomes, especially for organisms with large
genomes. Now that human, mouse, and other
large genomes have been sequenced, it is
possible, in principle, to measure how any
transcription factor is deployed across the entire
genome for a given cell type and physiological
condition. Such measurements are important for
systems-level studies because they provide a
global map of candidate gene network input
connections. These direct physical interactions
between transcription factors or cofactors and the

"Department of Genetics, Stanford University School of
Medicine, Stanford, CA, 94305-5120, USA. 2Bimogy
Division, California Institute of Technology, Pasadena, CA
91125, USA. >California Institute of Technology Beckman
Institute, Pasadena, CA 91125, USA.

*These authors contributed equally to this work.

1To whom correspondence should be addressed. E-mail:
woldb@its.caltech.edu (B.W.); myers@shgc.stanford.edu
(R.M.M.)

chromosome can be detected by chromatin
immunoprecipitation (ChIP) (/). In ChIP ex-
periments, an immune reagent specific for a
DNA binding factor is used to enrich target DNA
sites to which the factor was bound in the living
cell. The enriched DNA sites are then identified
and quantified.

For the gigabase-size genomes of vertebrates,
it has been difficult to make ChIP measurements
that combine high accuracy, whole-genome com-
pleteness, and high binding-site resolution. These
data-quality and depth issues dictate whether pri-
mary gene network structure can be inferred with
reasonable certainty and comprehensiveness, and
how effectively the data can be used to discover
binding-site motifs by computational methods.
For these purposes, statistical robustness, sam-
pling depth across the genome, absolute signal
and signal-to-noise ratio must be good enough
to detect nearly all in vivo binding locations for
a regulator with minimal inclusion of false-
positives. A further challenge in genomes large
or small is to map factor-binding sites with high
positional resolution. In addition to making com-

putational discovery of binding motifs feasible,
this dictates the quality of regulatory site anno-
tation relative to other gene anatomy landmarks,
such as transcription start sites, enhancers, introns
and exons, and conserved noncoding features
(2). Finally, if high-quality protein-DNA inter-
actome measurements can be performed rou-
tinely and at reasonable cost, it will open the
way to detailed studies of interactome dynam-
ics in response to specific signaling stimuli or
genetic mutations. To address these issues, we
turned to ultrahigh-throughput DNA sequenc-
ing to gain sampling power and applied size
selection on immuno-enriched DNA to enhance
positional resolution.

The ChIPSeq assay shown here differs
from other large-scale ChIP methods such as
ChlIPArray, also called ChIPchip (/); ChIPSAGE
(SACO) (3); or ChIPPet (4) in design, data
produced, and cost. The design is simple (Fig.
1A) and, unlike SACO or ChIPPet, it involves no
plasmid library construction. Unlike microarray
assays, the vast majority of single-copy sites in
the genome is accessible for ChIPSeq assay (3),
rather than a subset selected to be array features.
For example, to sample with similar complete-
ness by an Affymetrix-style microarray design, a
nucleotide-by-nucleotide sliding window design
of roughly 1 billion features per array would be
needed for the nonrepeat portion of the human
genome. In addition, ChIPSeq counts sequences
and so avoids constraints imposed by array
hybridization chemistry, such as base composition
constraints related to 7;,,, the temperature at which
50% of double-stranded DNA or DNA-RNA
hybrids is denatured; cross-hybridization; and
secondary structure interference. Finally, ChIPSeq
is feasible for any sequenced genome, rather than
being restricted to species for which whole-
genome tiling arrays have been produced.

ChIPSeq illustrates the power of new se-
quencing platforms, such as those from Solexa/
Illumina and 454, to perform sequence census
counting assays. The generic task in these appli-
cations is to identify and quantify the molecular
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Translational and rotational settings of H2A.Z
nucleosomes across the Saccharomyces

cerevisiae genome

Istvan Albert’, Travis N. Mavrich? Lynn P. Tomsho!, Ji Qi', Sara J. Zanton"?, Stephan C. Schuster’

& B. Franklin Pugh'?

The nucl is the fund tal building block of eukaryotic
chromosomes. Access to genetic information encoded in chromo-
somes is dependent on the position of nucleosomes along the DNA.
Alternative locations just a few nucleotides apart can have pro-
found effects on gene expression'. Yet the nucleosomal context in
which chri 1 and gene regul reside r
ill-defined on a genomic scale. Here we sequence the DNA of
322,000 individual Saccharomyces cerevisiae nucleosomes, con-
taining the histone variant H2A.Z, to provide a comprehensive
map of H2A.Z nucleosomes in functionally important regions.
With a median 4-base-pair resolution, we identify new and estab-
lished signatures of nucleosome positioning. A single predominant
rotational setting and multiple translational settings are evident.
Chromosomal elements, ranging from telomeres to centromeres
and transcriptional units, are found to possess characteristic nu-
cleosomal architecture that may be important for their function.
regulatory el including transcription factor bind-
ing sites and transcriptional start sites, show topological relation-
ships with nucleosomes, such that transcription factor binding
sites tend to be rotationally exposed on the nucleosome surface
near its border. Transcriptional start sites tended to reside about
one helical turn inside the nucleosome border. These findings
reveal an intimate relationship between chromatin architecture
and the underlying DNA sequence it regulates.

Chromatin is composed of repeating units of nucleosomes in which
~147base pairs (bp) of DNA is wrapped ~1.7 times around the

P
Pr

92,000 94,000 96,000 98,000 100,000 102,00

exterior of a histone protein complex’. A nucleosome has two fun-
damental relationships with its DNA®. A translational setting defines a
nucleosomal midpoint relative to a given DNA locus. A rotational
setting defines the orientation of DNA helix on the histone surface.
Thus, DNA regulatory elements may reside in linker regions between
nucleosomes or along the nucleosome surface, where they may face
inward (potentially inaccessible) or outward (potentially accessible).
Recent discoveries of nucleosome positioning sequences throughout
the S. cerevisiae (yeast) genome suggest that nucleosome locations are
partly defined by the underlying DNA sequence®’. Indeed, a tendency
of AA/TT dinucleotides to recur in 10-bp intervals and in counter-
phase with GC dinucleotides generates a curved DNA structure that
favours nucleosome formation’. Genome-wide maps of nucleosome
locations have been generated®”’, but not at a resolution that would
define translational and rotational settings. To acquire a better under-
standing of how genes are regulated by nucleosome positioning,
we isolated and sequenced H2A.Z-containing nucleosomes from S.
cerevisiae. Such nucleosomes are enriched at promoter regions®", and
thus maximum coverage of relevant regions can be achieved with
fewer sequencing runs. With this high resolution map we sought to
address the following questions: (1) what are the DNA signatures of
nucleosome positioning in vivo? (2) How many translational and
rotational settings do nucleosomes occupy? (3) Do chromosomal
elements possess specific chromatin architecture? (4) What is the
topological relationship between the location of promoter elements
and the rotational and translational setting of nucleosomes?

- 106,000 108,000 110,000 112,000 114,000

30 - m Reads
25 -

WFit
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15 -
10 -

Number of sequencing reads

YALO28W

YAL026C

YALO25C
B ORF-W I ORF-C

Figure 1| Distribution of H2A.Z nucleosomal DNA at an arbitrary region of
the yeast genome. Any region of the genome can be viewed in this way at
http://nucleosomes.sysbio.bx.psu.edu. An enlarged view of a peak is shown
in the inset, where each vertical bar corresponds to the number of

YAL024C YAL023C ~ YAL022C  YAL021C YAL020C

sequencing reads located at individual chromosomal coordinates. The
locations of ORFs are shown below the peaks. Additional browser shots are
shown in Supplementary Fig. 1.
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First ChiP-seq papers
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ChlIP-seq has become a dominant method for profiling epigenomes

4000
30000 1/ Ml Homo sapiens
HEE Mus musculus ke
1™
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o 20000 me
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cistrome.org/db
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Outline

Epigenome: an overview
ChlP-seq technique
ChlIP-seq data analysis
Future perspective
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ChiP-seq data analysis overview
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ChiP-seq data analysis overview

Where in the genome do these sequence reads come from? - Sequence
alignment and quality control

What does the enrichment of sequences mean? - Peak calling
What can we learn from these data? — Downstream analysis and integration




ChiP-seq data analysis: basic processing

 alignment of each sequence read: bowtie, BWA

cannot map to the reference genome X
can map to multiple loci in the genome X
can map to a unique location in the genome

* redundancy control:

Langmead etal. 2009,
Zang etal. 2009

1l <
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ChlIP-seq data analysis: Peak calling

- DNA fragment size estimation < pile-up profiling

peak model cross-correlation

- =
-
-— - -
- = _._‘1'
- - N —
#
. o . —_—
= | (T@) =T0) (T-(47) - T0) J

* A A

|+ Peak/signal
] detection

~ _
||||||||
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ChlIP-seq data analysis: Peak calling

« Sharp peaks  Broad peaks
transcription factor binding, Histone modifications,
DNase, ATAC-seq “super-enhancers”

Diffuse

MACS (Zhang, 2008)
dynamic background

_ SICER (Zang, 2009)
Poisson model

Spatial clustering of localized
weak signal and integrative
Poisson model

NOTCH1 l l' l‘

H3K27ac

DY W ~ 0 |

— - H——

NRARP EXD3

Wang, Zang et al. 2014
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MACS

Model-based Analysis for ChlP-Seq

Tag distribution along the genome ~ Poisson distribution (Agg = total tag / genome
size)

ChlIP-seq show local biases in the genome
— Chromatin and sequencing bias

— 200-300bp control windows have to few tags

— But can look further chiP
) Control
Dynamic A, = —— 300bp
max(Age, [Actn Atk Asks A1ok) \ ' , 1kb
Y
\ 5kb Y,
4 10kb

http://liulab.dfci.harvard.edu/MACS/
Zhang et al, Genome Bio, 2008
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SICER

« Spatial-clustering Identification of ChlP-Enriched Regions

M(s) Mis=s) G p(s)
— ~—— 7"\

ENEEN—NEEN--- B
N

M(S)=G(?nlo,g)/ds/1\~/1 (s—s")p(s")
50

M (s)=r8T1M ()8!

- wanmm

Zang et al. Bioinformatics 2009
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ChlIP-seq peak calling: Parameters

Parameter Remarks

Species and reference genome version,

Genome e.g. hg38, hg19, mm10, mm9

Fraction of the mappable genome, vary in

Effective genome rate species, read length, etc.

Estimated by default; can specify

DNA fragment size otherwise
Window size Data resolution, usually nucleosome
periodicity length, i.e. 200bp
G : (for SICER only) Allowable gaps between
ap size .. : :
eligible windows, usually 2 or 3 windows
P-value cut-off Threshold for peak calling, from model

Threshold for peak calling, BH correction

False discovery rate (FDR) cut-off
from p-value.



ChlIP-seq data analysis: Review
1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
QC

1.

2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation

4. Peak/signal detection

3. Downstream analysis/integration



Data formats

fastq: raw sequences

BED:

chril 10344210 10344260 255 0 -
chrd 76649430 76649480 255 0 +
chr3 77858754 77858804 255 0 +
chr16 62688333 62688383 255 0 +
chr22 33031123 33031173 255 0 -

SAM/BAM: aligned sequencing reads

bedGraph, Wig, bigWig: pile-up profiles for browser

visualization
R W T




Data flow

Raw QC measures:
sequence g fastq

reads . Sequence quality (fastqc)

« Mapping quality (uniquely mapped ratio)

Aligned

reads - BAM/BED « Library complexity (PBC)

Bowtie/BWA
Reference genome

Profile; - bedGraph/WighbigWig  * ChlIP enrichment
« Signal/Noise (FRIP score)

Peaks - BED « Regulatory annotation

MACS/SICER
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Galaxy: web-interface analysis platf

 https://usegalaxy.org/

& C | @& https://usegalaxy.org|

Tools

search tools

Get Data

Collection Operations
Expression Tools

GENERAL TEXT TOOLS

Text Manipulation

Filter and Sort

Join, Subtract and Group
Datamash

GENOMIC FILE MANIPULATION
FASTA/FASTQ

FASTQ Quality Control
SAM/BAM

BED

VCF/BCF

Nanopore

Convert Formats

Lift-Over

COMMON GENOMICS TOOLS
Operate on Genomic Intervals
Fetch Sequences/Alignments
GENOMICS ANALYSIS
Assembly

Annotation

Mapping

Variant Calling

<

I»

Analyze Data Workflow Visualize p~ Login or Register

Galaxy is an open source, web-based platform for data intensive biomedical research. If you are new to Galaxy start here or consult our help resources.

You can install your own Galaxy by following the tutorial and choose from thousands of tools from the Tool Shed.

TweetS by @galaxyproject

= GalaxyHelp
Got Questions?

Single-Cell RNAseq Training 2020

Get finswers.

help.galaxyproject.org

E Earlham Institute

Single-Cell RNAseq Training Course
The course will provide an introduction to Single Cell Genomics covering

avnarimantal dacinn rall enrtina and nraraceina anality Af coniionca data data

Embed View on Twitter

Qﬁ // /_
PennState QI'!" OREGON TA@@ .
'3 JOHNS HOPKINS HEALTH G & CYVERSE

UNIVERSITY UNIVERSITY

The Galaxy Team is a part of the Center for Comparative Genomics and This instance of Galaxy is utilizing infrastructure generously provided by CyVerse at
Bioinformatics at Penn State, the Department of Biology at Johns Hopkins University the Texas Advanced Computing Center, with support from the National Science
and the Computational Biology Program at Oregon Health & Science University. Foundation.

The Galaxy Project is supported in part by NSF, NHGRI, The Huck Institutes of the Life Sciences, The Institute for CyberScience at Penn State, and Johns Hopkins University.

This is a free, public, internet accessible resource. Data transfer and data storage are not encrypted. If there are restrictions on the way your research data can be stored and used, please
consult your local institutional review board or the project Pl before uploading it to any public site, including this Galaxy server. If you have protected data, large data storage requirements, or
short deadlines you are encouraged to setup your own local Galaxy instance or run Galaxy on the cloud.

orm

History fo - ]

search datasets O

Unnamed history

(empty)

O This history is empty. You can load
your own data or get data from
an external source
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Run MACS on Cistrome, a Galaxy-based platform
 http://cistrome.org/ap/

e 8 Galaxy / Cistrome / Cistrome X

Chongzhi

& C' @ cistrome.org/ap/root

Analyze Data Workflow Shared Datav Labv Visualizationv Helpv User~

- Galaxy / Cistrome

4 . ~
Tees — Upload File (version 1.1.4) oty =
search tools () File Format: Unnamed history
Auto-detect v 329.0 MB Q¥ee
CISTROME TOOLBOX Which format? If for expression data, choose cel.zip or xys.zip. See help below
Import Data . g . 68: Heatmap lo »
mport Data File (Please avoid Windows format text file): SACAR.
Upload File from your computer . .
Choose File No file chosen 67: Heatmap k-meanscl @ ¢ x
CistromeFinder Import from TIP1: Due to browser limitations, uploading files larger than 2GB is guaranteed to fail. To upload large files, use the URL assified regions
Cistrome Finder method (below) or ASPERA (please read the instruction). TIP2: If you want to upload expression data, please read the
instruction and specify cel.zip or xys.zip for file format. 66: Heatmapr R script @ 4 %
CistromeCR Import from Cistrome
Chromatin Regulator URL/Text: 65: Heatmap image AR
Expression CEL file packager can
download .cel files from GEO by 64: Heatmap lo IOWAR '3
given GSM IDs and prepare a
cel.zip file for expression analysis. 63: Heatmap k-meanscl @ 4 ¥
) ) Z assified regions
GenomeSpace import from file Here you may specify a list of URLs (one per line) or paste the contents of a file.
browser 62: Heatmapr R script @ 4 %
Files uploaded via ASPERA:
Data Preprocessing .
. File size Date 61; Heatmap image @& x
Gene Expression
Integrative Analysis Your ASPERA upload directory contains no files. 60: Heatmap log @ 4 %
Liftover/Others This Galaxy server allows you to upload files via ASPERA. To upload some files, log in to the ASPERA server at
cistrome.dfci.harvard.edu using your Cistrome credentials (email address and password). 59: Heatmap k-means cdl @ 4" x
GALAXY TOOLBOX assified regions
Convert spaces to tabs:
LERU Yes 58: Heatmapr R script IOW AR '3
Text Manipulation Use this option if you are entering intervals by hand.
Filter and Sort 57: Heatmap image @ & X
) Genome:
e Human Dec. 2013 (GRCh38/hg38) (hg38) s 56: Heatmap log ST
Convert Formats
Extract Features m 55: Heatmap k-means cl @ 4 %
Fetch Sequences assified regions
e
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Try SICER2
 https://zanglab.github.io/SICER2/

[ ® & SICER2 Documentation X +

& C & zanglab.github.io/SICER2/

4 SICER2 Documentation

Docs » Quick Start @) Edit on GitHub

Search docs

Quick Start SICERZ

SICER2
Introduction Redesigned and improved ChlP-seq broad peak calling tool SICER
Installation
Using SICER2
Using SICER2 for differential peak calling GitHub Repo
Example Use
Workflow of SICER2 Introduction

Understanding SICER2 Outputs
Chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) can be used

to map binding sites of a protein of interest in the genome. Histone modifications usually occupy
broad chromatin domains and result in diffuse patterns in ChlP-seq data that make it difficult to
identify signal enrichment. SICER, a spatial clustering approach for the identification of ChIP-enriched
regions, was developed for calling broad peaks from ChIP-seq data.

Contact

Usability of the original SICER software has been affected by increased throughputs of ChlP-seq

experiments over the years. We now present SICER2 a more user-friendly version of SICER that has

been redisgned and streamlined to handle large ChlP-seq data sets. This new Python package Jin Yong (Jeffrey) Yoo 2020
supports multiple job submissions on cluster systems and parallel processing on multicore
architectures.
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ChiP-seq: Downstream analyses

« Data visualization
— UCSC genome browser: http://genome.ucsc.edu/

— WashU epigenome browser:
http://epigenomegateway.wustl.edu/

— IGV: http://software.broadinstitute.org/software/igv/

 Integration with gene expression
— BETA: http://cistrome.org/BETA/

* Integration with other epigenomic data
— BART: http://bartweb.org/
— MARGE: http://cistrome.org/ MARGE/
— GREAT: http://great.stanford.edu
— ENCODE SCREEN: http://screen.umassmed.edu/
— MANCIE: https://cran.r-project.org/package=MANCIE
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é

7\ ENCODE

https://www.encodeproject.org/

(" Matrix - ENCODE X +

C @ encodeproject.org/matrix/?type=Experiment&status=released

Showing 16414 results

=P B2 Y

Assay type

DNA binding
Transcription
DNA accessibility
RNA binding

NANIA vnAthdAadianm

Assay title
Q, | Search

TF ChIP-seq
Histone ChIP-seq
Control ChIP-seq
scRNA-seq
DNase-seq

polyA plus RNA-seq
total RNA-seq

Q@ % 0@ :

9017
4547
1109

699

zen

3608
3180
2229
1078
836
770
704
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Cistrome Data Browser

http://cistrome.org/db/

® O ® & cistromeDB X +

& > C  ® NotSecure | cistrome.org/db/#/ % 0 e

Cistrome Data Browser  Home Documentation ~ About  Statistics Batch download ~ ToolKit  Cistrome-GO Liu Lab

‘2. Cistrome Data Browser

€ Tips
e Check what factors regulate your gene of interest, what factors bind in your interval or have a significant binding overlap with your peak set. Have a try at CistromeDB Toolkit.
e |f you have a Transcription Factor ChlP-seq (and TF perturbed expression) data, Cistrome-GO help you predict the function of this TF.
® Please help us curate the samples which has incorrect meta-data annotation by clicking the button on the inspector page. Thank you!

Species Biological Sources «| Factors
Homo sapiens 1-cell pronuclei AATF
Mus musculus 1015¢ ABCC9

10326 ACSS2

1064Sk ACTB

106A ADNP . . .

Mei et al. Nucleic Acids Res. 2017
Results Zheng et al. Nucleic Acids Res.2018
Batch Species Biological Source Factor Publication Quality Control

O Homo sapiens Hela; Epithelium; Cervix BTAF1 Johannes F, et al. Bioinformatics 2010 ‘. . ‘. . 52



BART: Binding Analysis for Regulation of Transcription

http://bartweb.org

: 4 N\ 4 N :
: M&—“ " ‘ " . :
User input ! :
: : Lok o | : ! "y
E \>700 H3K27ac ChIP-seq) pumIan LI 1L E Output prediction
Gene list i , | A — | ~BRD4
| Adaptive Lasso regression >12,000 TF ChIP-seq datasets ! 4l
| \ 1 a YC
: . > o I o ~—MED1
ChlIP-seq . Mapping i oﬂﬂ Y T Y ROC associations A=
| g " e > O 2]
| > Cis-regulatory profile Statistical tests, |
: > Background adjustment, ! 0L .
. Cis-regulatory element Rank integration 1 883
Region set ; repertoire ! Rank of all TFs
Hi-C (2.7 million in the human
- \differential genome, 1.5 millionin :
Einteraction mouse) Wang et al., Bioinformatics 2018 i

____________________________________________________________________________________

Ma et al., under review 2020



ChlIP-seq data analysis: Review

1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
QC

1.

2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation

4. Peak/signal detection

3. Downstream analysis/integration
4. Take advantage of public resources



Future Perspectives

» Limitations of ChlP-seq:
* Dependent on antibody availability and quality
« Semi-quantitative: does not detect global change
* Needs many cells — difficult for clinical samples
 Cellular heterogeneity
« Single-cell epigenomics
» Single-cell ChlP-seq
« Single-cell ATAC-seq
 Joint assay of scRNA-seq and sc epigenome-seq
« Spatial genomics and epigenomics



ARTICLES

nature
biotechnology

Single-cell ChlP-seq reveals cell subpopulations
defined by chromatin state

Assaf Rotem!27, Oren Ram?~47, Noam Shoresh?7, Ralph A Sperling!6, Alon Goren>, David A Weitz! &
Bradley E Bernstein?-4

Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However,
current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA
barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by
assaying thousands of individual cells and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic
progenitors into high-quality chromatin state maps for each cell type. The data from each single cell are sparse, comprising on
the order of 1,000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of subpopulations defined
by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison
to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity
not captured by transcriptional analysis alone.

2015
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Lahnemann et al. Genome Biology (2020) 21:31

https://doi.org/10.1186/513059-020-1926-6 Genome B|O|Ogy

Eleven grand challenges in single-cell ")
data science

updates
David Ldhnemann'?3, Johannes Késter'*, Ewa Szczurek®, Davis J. McCarthy®’, Stephanie C. Hicks®?,
Mark D. Robinson® @, Catalina A. Vallejos'®!" Kieran R. Campbell'>'314 Niko Beerenwinkel>'®,
Ahmed Mahfouz'”'8, Luca Pinello'®?9?! Pavel Skums??, Alexandros Stamatakis?>?4,
Camille Stephan-Otto Attolini?>, Samuel Aparicio'>2®, Jasmijn Baaijens?’, Marleen Balvert?’28,
Buys de Barbanson??3%3! Antonio Cappuccio®?, Giacomo Corleone?3, Bas E. Dutilh?834,
Maria Florescu??3%31 Victor Guryev??, Rens Holmer3®, Katharina Jahn'>'®, Thamar Jessurun Lobo>?,
Emma M. Keizer?’, Indu Khatri*®, Szymon M. Kielbasa>?, Jan O. Korbel*?, Alexey M. Kozlov?3,
Tzu-Hao Kuo?, Boudewijn P.F. Lelieveldt*'#2, lon I. Mandoiu®3, John C. Marioni#44>4,
Tobias Marschall*#8, Felix Mlder'#, Amir Niknejad®%°", Lukasz Raczkowski®, Marcel Reinders'//18,
Jeroen de Ridder???%, Antoine-Emmanuel Saliba>?, Antonios Somarakis*?, Oliver Stegle?046>3,
Fabian J. Theis®*, Huan Yang>>, Alex Zelikovsky®>/, Alice C. McHardy?, Benjamin J. Raphael®®,
Sohrab P. Shah°? and Alexander Schénhuth?/28*

Abstract

The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has
empowered single-cell sequencing technology. Thousands—or even millions—of cells analyzed in a single
experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we
outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For
each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This
compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding
problems for the coming years.
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Summay

Transcription factors and histone modifications are two
categories of functionally important marks of epigenomes.

ChlP-seq is used to profile protein-DNA interaction
iInformation in the epigenomes

ChlP-seq data analysis
 MACS for narrow peaks
« SICER for broad peaks

Online tools and resources



Thank you very much!

zang@yvirginia.edu
zanglab.org




