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Outline
• Epigenome: basics review
• ChIP-seq overview 
• ChIP-seq data analysis
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Epigenome

3Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI) 

nucleosome

histone

The epigenome is a multitude of chemical compounds that can tell the genome what 
to do. The epigenome is made up of chemical compounds and proteins that can 
attach to DNA and direct such actions as turning genes on or off, controlling the 
production of proteins in particular cells.                                -- from genome.gov



Epigenomic marks
• DNA methylation
• Histone marks

– Covalent modifications
– Histone variants

• Chromatin regulators
– Histone modifying enzymes
– Chromatin remodeling complexes

• * Transcription factors
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Histone modifications
• Nucleosome Core Particles 
• Core Histones: H2A, H2B, H3, H4
• Covalent modifications on histone 

tails include: 
methylation (me),
acetylation (ac),
phosphorylation …

• Histone variants
• Histone modifications are 

implicated in influencing gene 
expression. 

Allis C. et al. Epigenetics. 2006

Notation:
H3K4me3
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Histone modifications associate with 
regulation of gene expression

6Wang, Zang et al. Nat Genet 2008

histone acetyl transferases (HATs) can associate with different
regions of genes. For example, PCAF associates with the elongation-
competent RNA Pol II, whereas p300 interacts with the initiation-
competent RNA Pol II (ref. 19). Additionally, depletion of GCN5
or PCAF, but not CBP or p300, affects H4K8ac and H3K14ac20.
The distribution patterns of these histone acetylations and histone
methylations are exemplified by the genomic locus for ZMYND8 (also
known as PRKCBP1), which is expressed in CD4+ T cells (Fig. 1g). The
promoter region (highlighted in red), which was defined as a 2-kb
region surrounding the TSS, is associated with 25 modifications
(P o 10!7).

To identify the patterns of histone modifications in an unbiased
way, we examined each of the 12,541 gene promoters for association
with each of the 18 acetylations, 19 methylations and H2A.Z. Of the
possible patterns, only a small fraction exists at promoters. Of 4,339

detected patterns, 1,174 are associated with
multiple genes and 3,165 with only one gene
each (Fig. 2a). The 13 most prevalent patterns
are each associated with more than 62 genes.
We next examined the expression of genes in
these patterns, using the mean expression of
all genes as a reference (Fig. 2b). It seems that
we can roughly classify these top patterns into
three classes (I, II and III in Fig. 2b) accord-
ing to expression. Four of six patterns in class
I contain H3K27me3 and correlate with low
expression. These patterns also contain
H3K4me1/2/3, H3K9me1 and H2A.Z but
no acetylations. The patterns containing
only H3K4me3 or no modification also
belong to this class. Class II contains
H3K36me3 or a modification backbone con-
sisting of 17 modifications (as discussed
below), or the backbone plus H4K16ac,
which correlates with intermediate gene
expression. Class III shows the highest expres-
sion, and it includes H2BK5me1, H4K16ac,
H4K20me1 and H3K79me1/2/3 in addition
to the modification backbone (Fig. 2b). Our
Gene Ontology analysis suggests that genes

involved in cellular physiology and metabolism are enriched in the
active class III patterns, consistent with their house-keeping roles (data
not shown). In contrast, many genes involved in development, cell–
cell signaling and synaptic transmission are enriched in the inactive
class I patterns, consistent with their not being required for mature
T-cell function.

To correlate each modification with gene expression, we compared
the average gene expression with or without each modification
(Fig. 2c). H3K27me3 was among a group of repressive marks also
including H3K27me2, H3K9me2, H3K9me3 and H4K20me3, whereas
most other modifications correlated with activation. Although the
modification patterns do not uniquely determine the extent of
expression, the H3K79me3 and H2BK5ac modifications showed
weak correlation with expression within a modification pattern
(Supplementary Fig. 5 online).
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Figure 3 Patterns of histone modifications at
enhancers. (a) The histone modification pattern at
the CD28RE enhancer (highlighted in red) of the
IL2RA gene. Significant modifications are
indicated by asterisks on the left. (b) Histone
modification patterns at the IFNG gene and its
downstream enhancer, CNS22, are shown.
Significant modifications at CNS22 are indicated
by asterisks on the left. (c) The fractions of
enhancers associated with each of the 38
modifications. (d) Patterns of histone
modifications at 4,179 DNase hypersensitive
sites. The y axis indicates the number of patterns,
and x axis indicates the number of hypersensitive
sites associated with each pattern. (e) Correlation
analysis of gene expression with the ten largest
modification patterns by assigning an enhancer to
the TSS of the nearest known gene. All, all
DNase I hypersensitive sites. The number of
hypersensitive sites associated with each
pattern is indicated.
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“Functions” of histone marks

survey DNA enrichment at !500 representative loci using the
nCounter probe system. High-quality antibodies are distinct
from IgG patterns and the occupancy distribution correlates
with a logical set of chromatin states. Validating antibody re-
agents for enrichment specificity and robustness ensures good
quality ChIP-seq data sets with high signal to noise ratios.

Given that ChIP-seq is a mature technology, the technical
restrictions of the technique are well defined by its users. These
restrictions include the need for large amounts of starting mate-
rial, limited resolution, and the dependence on antibodies.
Improvements to ChIP-seq have been developed to address
these limitations and expand the possibilities of its use. Collect-
ing enough starting material for ChIP-seq can be challenging
because experiments typically require 1 million (histone modifi-
cations) to 5million (TFs and chromatinmodifiers) cells. Although
this is feasible when studying fast dividing cell lines, the chal-
lenge arises when studying primary cells and rare populations
such as cancer stem cells or progenitor cells. ChIP-seq samples
of 50,000 cells or less are possible with the ChIP-nano protocol
(Adli and Bernstein, 2011). Key method modifications achieve
effective chromatin fragmentation in small volumes, ensure
minimal sample handling and loss by washing samples in col-
umns, and reduce background signal. Another procedure, called
ChIP-exo, improves the limited resolution from fragmentation
heterogeneity after chromatin is prepared by sonication (Rhee
and Pugh, 2011). As its name suggests, sonicated and immuno-
precipitated DNA is treated with a 50-to-30 exonuclease to digest
DNA to the footprint of the crosslinked protein such that
sequencing results are nucleotide resolution. This type of high-
resolution protein-binding data is most beneficial for uncovering
motifs of specific binding proteins and the effect of sequence
variants on protein-binding affinity. Profiling genome-wide
DNA-protein interactions with ChIP-seq is technically chal-
lenging when studying novel proteins or protein isoforms, such
as a histone variant, that lacks a robust or specific antibody.
In this case, an obvious approach is to transiently or stably ex-
press a protein of interest (POI) with a tag or epitope that can
be readily ChIP’ed. Controls are necessary to ensure the fusion
protein’s localization is not altered by nonendogenous expres-
sion levels, protein instability, steric inherence, or other effects
of the tag itself.

A ChIP step can be added to other genomic profiling ap-
proaches for integrated epigenomic profiling. First, two ChIP

steps in a row, or Sequential-ChIP-seq, can uncover histone
PTMs on the same molecule or chromatin-associated proteins
in the same complex. Several groups combined bisulfite
sequencing with ChIP giving rise to BisChIP-seq and ChIP-BS-
seq (Brinkman et al., 2012; Statham et al., 2012). Long-distance
DNA interactions mediated by a specific protein can be profiled
using chromatin interaction analysis by paired-end-tag
sequencing, or ChIA-PET (Fullwood et al., 2009). We anticipate
other inventive uses of ChIP technology to continue to uncover
undiscovered roles of histone modifications and histone variants
in transcriptional regulation.

Mapping of Chromatin Structures
Nucleosome Positioning
Moving up the hierarchy of genomic organization, we now look
beyond the DNA and histone modifications to the positioning
of nucleosomes along the genome. Our epigenome at its
most basic level is repeating units of 147 base pairs wrapped
1.7 times around each nucleosome with varying distances of
linker DNA between each unit. Even this extremely simplistic
model is complex because nucleosome positioning can both
inhibit and promote factor binding (Bell et al., 2011). First,
nucleosomes can be positioned to obstruct or reveal specific
DNA sequences. Second, becausemodifications on histone tails
serve as binding platforms for transcriptional regulators, nucleo-
some positioning regulates factor recruitment. And finally,
nucleosomes are suggested to inhibit transcription by slowing
progression of RNA polymerase II as it transcribes through a
gene body. From a medical perspective, it will be important to
determine the possible role of aberrant nucleosome positioning
as caused by disease-associated SNPs, insertions, deletions,
and translocations.
Our understanding of the regulation of nucleosome positioning

came from studies of smaller genomes, such as those in yeast
and fly (Jiang and Pugh, 2009). Nucleosome positioning along
DNA is influenced by favorable DNA sequence composition,
the actions of ATP-dependent nucleosome remodelers, and
strongly positioned nucleosomes (Mavrich et al., 2008; Narlikar
et al., 2013; Yuan et al., 2005). Although we understand the
main determinants of nucleosome positioning, the exact contri-
bution of each is unclear and currently under debate.
The most common method for profiling genome-wide

nucleosome positioning is microcococal nuclease digestion of

Table 3. Distinctive Chromatin Features of Genomic Elements

Functional Annotation Histone Marks References

Promoters H3K4me3 Bernstein et al., 2005; Kim et al., 2005; Pokholok

et al., 2005

Bivalent/Poised Promoter H3K4me3/H3K27me3 Bernstein et al., 2006

Transcribed Gene Body H3K36me3 Barski et al., 2007

Enhancer (both active and poised) H3K4me1 Heintzman et al., 2007

Poised Developmental Enhancer H3K4me1/H3K27me3 Creyghton et al., 2010; Rada-Iglesias et al., 2011

Active Enhancer H3K4me1/H3K27ac Creyghton et al., 2010; Heintzman et al., 2009;

Rada-Iglesias et al., 2011

Polycomb Repressed Regions H3K27me3 Bernstein et al., 2006; Lee et al., 2006

Heterochromatin H3K9me3 Mikkelsen et al., 2007

44 Cell 155, September 26, 2013 ª2013 Elsevier Inc.

7Rivera & Ren Cell 2013



H3K4me3/H3K27me3 Bivalent Domain
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H3K4me3

H3K27me3

Repressed

Remained

InducedPoised

From: https://pubs.niaaa.nih.gov/publications/arcr351/77-85.htm



ChIP-seq: Profiling epigenomes with sequencing

9Original figure from ENCODE, Darryl Leja (NHGRI), Ian Dunham (EBI) 

nucleosome

histone

ATAC-seq



Published ChIP-seq datasets are skyrocketing                                 
We are entering the Big Data era
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Chromatin ImmunoPrecipitation (ChIP)
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Protein-DNA crosslinking in vivo (for TF)
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Chop the chromatin using sonication (TF) or 
micrococal nuclease (MNase) digestion (histone)

13



Specific factor-targeting antibody
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Immunoprecipitation

15



DNA purification
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PCR amplification and sequencing
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ChIP-seq data analysis overview

18

Scale
chr19:

500 bases hg19
15,308,000 15,308,100 15,308,200 15,308,300 15,308,400 15,308,500 15,308,600 15,308,700 15,308,800 15,308,900 15,309,000 15,309,100 15,309,200

User Supplied Track

@ILLUMINA-8879DC:231:KK:3:1:1070:945 1:Y:0:
NNNAATACAGTCAGAAACATATCATATTGGAGAATA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1153:945 1:Y:0:
NNNAAGCACACAGAAGATAACTAAACAATCAAGTAG
####################################
@ILLUMINA-8879DC:231:KK:3:1:1222:945 1:Y:0:
NNNAAGGGTCTTGAGAAGAAATCATTCTGGATGGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1304:939 1:Y:0:
NNNCCAGGCTCCCGCGATTCTCCTGCCTCAGCTTCT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1354:945 1:Y:0:
NNNCTCTTCCTTAGCTAAACTTTCAACTAAGCCAAA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1411:932 1:Y:0:
NNNGTAGGACCATTGGCGTTGCGACACAAAAAATTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1496:937 1:Y:0:
NNNTTCATCGGGTTGAGAGTCCCCTTGTTGCATGCA
####################################
@ILLUMINA-8879DC:231:KK:3:1:1533:939 1:Y:0:
NNNATTTTCCCGTTCCAGGTCGCAATTTCCGCCGTT
####################################
@ILLUMINA-8879DC:231:KK:3:1:1573:940 1:Y:0:
NNNGGGGTGCGCCTTTAGTCCCAGCTACTCAGGAAC
####################################



ChIP-seq data analysis overview

• Where in the genome do these sequence reads come 
from? - Sequence alignment and quality control 

• What does the enrichment of sequences mean?  - Peak 
calling

• What can we learn from these data? – Downstream 
analysis and integration 

19



ChIP-seq data analysis: basic processing 

• alignment of each sequence read: bowtie or BWA 

• redundancy control:

20

cannot map to the reference genome
can map to multiple loci in the genome
can map to a unique location in the 
genome

✗
✗
✔

✔
Langmead et al. 2009, 
Zang et al. 2009



• pile-up profiling

• Peak/signal 
detection

ChIP-seq data analysis: Peak calling

• DNA fragment size estimation 

Original algorithm of MACS 
v1
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• Sharp peaks
transcription factor binding, 
DNase, ATAC-seq

MACS (Zhang, 2008)
dynamic background
Poisson model

ChIP-seq data analysis: Peak calling

• Broad peaks 
Histone modifications, 

“super-enhancers”
Diffuse

SICER (Zang, 2009)
Spatial clustering of localized 
weak signal and integrative 
Poisson model

22
Wang, Zang et al. 2014

NOTCH1

H3K27ac



MACS
• Model-based Analysis for ChIP-Seq
• Tag distribution along the genome ~ Poisson distribution (λBG

= total tag / genome size)
• ChIP-seq show local biases in the genome

– Chromatin and sequencing bias
– 200-300bp control windows have to few tags
– But can look further

Dynamic λlocal = 
max(λBG, [λctrl, λ1k,] λ5k, λ10k)

ChIP

Control
300bp
1kb
5kb
10kb

http://liulab.dfci.harvard.edu/MACS/
Zhang et al, Genome Bio, 2008



SICER
• Spatial-clustering Identification of ChIP-Enriched Regions

24Zang et al. Bioinformatics 2009

★★★★★
omictools.com

10kb

5kb



ChIP-seq peak calling: Parameters

25

Parameter Remarks

Genome Species and reference genome version, 
e.g. hg38, hg18, mm10, mm9

Effective genome rate Fraction of the mappable genome, vary in 
species, read length, etc.

DNA fragment size Estimated by default; can specify
otherwise

Window size Data resolution, usually nucleosome 
periodicity length, i.e. 200bp

Gap size (for SICER only) Allowable gaps between 
eligible windows, usually 2 or 3 windows

P-value cut-off Threshold for peak calling, from model

False discovery rate (FDR) cut-off Threshold for peak calling, BH correction 
from p-value. 



ChIP-seq data analysis: Review

1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
1. QC
2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation
4. Peak/signal detection

3. Downstream analysis/integration

26



Data formats
• fastq: raw sequences

• BED:
chr11 10344210 10344260 255 0 -
chr4 76649430 76649480 255 0 +
chr3 77858754 77858804 255 0 +
chr16 62688333 62688383 255 0 +
chr22 33031123 33031173 255 0 -

• SAM/BAM: aligned sequencing reads

• bedGraph, Wig, bigWig: pile-up profiles for browser 
visualization

27



Data flow

28

Raw
sequence

reads
• fastq

Aligned 
reads • BAM/BED

Profile;
Peaks

• bedGraph/Wig/bigWig

• BED
MACS/SICER

Bowtie/BWA
Reference genome



Galaxy: web-interface analysis platform
• https://usegalaxy.org/

29



Run MACS on Cistrome, a Galaxy-based platform
• http://cistrome.org/ap/

30



Run SICER on Galaxy-based platforms
• http://services.cbib.u-bordeaux.fr/galaxy/

31



ChIP-seq: Downstream analysis
• Data visualization

– UCSC genome browser: http://genome.ucsc.edu/
– WashU epigenome browser: 

http://epigenomegateway.wustl.edu/
– IGV: http://software.broadinstitute.org/software/igv/

• Meta analysis
– CEAS: http://liulab.dfci.harvard.edu/CEAS/

• Integration with gene expression
– BETA: http://cistrome.org/BETA/
– MARGE: http://cistrome.org/MARGE/

• Integration with other epigenomic data
– GREAT: http://great.stanford.edu
– ENCODE SCREEN: http://screen.umassmed.edu/
– MANCIE: https://cran.r-project.org/package=MANCIE
– Cistrome DB: http://cistrome.org/db/ 32



BETA: Binding Expression Target Analysis

• Regulatory Potential

33

TSS

P (gi) =
∑

j∈S(i)

exp
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MARGE: A big data driven, integrative regression and semi-
supervised approach for predicting functional enhancers

34
Wang, Zang et al. Genome Res 2016

samples samples samplessample 
selection

enhancer 
prediction



ENCODE

35

https://www.encodeproject.org/



Cistrome Data Browser
http://cistrome.org/db/

36



ChIP-seq data analysis: Review

1. Read mapping (sequence alignment)

2. Peak calling: MACS or SICER
1. QC
2. DNA fragment size estimation (for Single-end)
3. Pile-up profile generation
4. Peak/signal detection

3. Downstream analysis/integration

37



Summary

• ChIP-seq is used to profile epigenomes
• ChIP-seq data analysis

• MACS for narrow peaks
• SICER for broad peaks

• Online tools and resources

38



Further Reading
The cancer epigenome: Concepts, challenges, and therapeutic opportunities
Science 17 Mar 2017: Vol. 355, Issue 6330, pp.1147-1152
http://science.sciencemag.org/content/355/6330/1147

39

of the hallmarks of cancer, EMT is underpinned
by alterations in epigenetic regulators (22).
At the molecular level, these cell state trans-

itions are largely mediated through the collabo-
rative action of transcription factors and epigenetic
regulators. The diversity of histone and DNA mod-
ifications introduces a complexity that can subtly
alter transcription programs within the cell (4).
These chromatin modifications, including acet-
ylation, methylation, and phosphorylation, are not
static entities but constitute a dynamically chang-
ing and complex landscape that evolves in a cell
context–dependent fashion. Notably, chromatin
modifications that activate or repress transcrip-
tion are not always mutually exclusive, as evi-
denced by “bivalent domains” marking genes
poised for transcription in normal and malignant
cells (23). First described in embryonic stem cells,
genes associated with bivalent promoters, which
have the concurrent presence of both the activa-
ting histone modification H3K4me3 and the
repressive modification H3K27me3, have been
implicated in the development of cancer and
are noted to undergo DNA hypermethylation at
their CpG islands (23). The Polycomb (PcG) and
Trithorax (TrxG) complexes—which are respon-
sible for the methylation of histones H3K27 and

H3K4, respectively—largely work in an opposing
manner to repress or facilitate gene expression.
Members of these two essential complexes are
some of the most commonly mutated epigenetic
regulators in cancer (6, 13). Some malignancies,
such as germinal center–derived B cell lymphomas,
contain mutations in the PcG protein EZH2 and in
the TrxG member MLL2, alongside mutations in
histone acetyltransferases such as CREBBP [cyclic
adenosine monophosphate response element–
binding protein (CREB) binding protein] and EP300
(E1A-binding protein) (24). These findings would
suggest that impaired resolution of the germinal B
cell transcription program of these cells prevents
maturation and is a seminal event in the initia-
tion and maintenance of these malignancies.

Epigenetic dysregulation contributes to
the origin of cancer

Cancer is thought to develop through clonal ex-
pansion of mutant premalignant stem and progen-
itor cells. These cells subsequently acquire further
mutations that provide a subclonal growth and
proliferative advantage, which ultimately man-
ifests in a clinically diagnosed malignancy. This
evolutionary model of cancer has been well stud-
ied in the hematopoietic system, where recent

evidence has implicated epigenetic regulators
as the primary targets that establish the fertile
soil for malignant outgrowth. Several groups have
established that clonal hematopoiesis, whereby
hematopoietic stem and progenitor cell clones
carrying somatic mutations give rise to the ma-
jority of blood cells, occurs in at least 10% of
people older than 65 years of age (25–27). The
three most common mutations driving clonal
stem cell expansion occur in genes encoding the
epigenetic regulators DNMT3A, TET2, and ASXL1
(25–27). These mutations confer a competitive
self-renewal advantage to the hematopoietic stem
cells harboring them, resulting in clonal expan-
sion of these cells (28). The precise molecular
mechanisms governing this increased capacity
for self-renewal are still under investigation,
but it is increasingly clear that clonal hemato-
poiesis is a prelude to a variety of hematopoietic
malignancies, includingmyelodysplastic syndromes
and acute myeloid leukemia (AML) (25–27). More-
over, there is accumulating evidence that pre-
leukemic cells containing mutations in epigenetic
regulators such as the de novo DNAmethyltrans-
ferase DNMT3A can survive conventional chemo-
therapies and serve as the nidus for leukemia
relapse (29). It remains to be established whether
the lessons learned about the central role of epi-
genetic regulators in the origins of clonal malig-
nant hematopoiesis are broadly applicable to other
malignancies.

Cancer mutations in “dark matter”
affect chromatin regulation

As we near completion of a comprehensive an-
notation of recurrent mutations in protein-coding
genes, it is clear that we have just scratched the
surface of the cancer genome. The mutation rate
of the noncoding regulatory genome, or so-called
“dark matter,” is nearly double that of coding
regions, although what role these noncoding mu-
tations play in driving oncogenesis is the subject
of ongoing investigation (30). Such mutations
occur in multiple gene promoters and enhancer
elements and are found in a range of cancers
(31, 32). A pioneering example was the discovery
of mutations within the promoter region of TERT,
the gene that encodes the catalytic subunit of
telomerase, in more than 70% of melanomas
(33, 34). Although it is well recognized that can-
cer cells have high telomerase activity, muta-
tions within the coding region of the telomerase
gene are not common in human cancer genomes.
Interestingly, the TERT promoter mutations ap-
pear to increase the expression of TERT by creat-
ing a de novo binding motif for the ETS family of
transcription factors.
In addition to the promoter mutations, mu-

tations that alter enhancer elements have also
been discovered and demonstrated to be func-
tionally relevant. Chromosomal translocations
involving inv(3)(q21q26.2) or t(3;3)(q21;q26.2)
result in AML with a poor prognosis; this is in
part due to the aberrant and sustained expres-
sion of the proto-oncogene EVI1. Detailed studies
have now revealed that the translocation leads to
the relocation of a distal enhancer for the GATA2
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Fig. 1. Current and emerging epigenetic therapies. Chromatin exists in two major states: an open
relaxed conformation called euchromatin, within which most transcriptionally active genes reside, and a
more condensed compact state called heterochromatin, which is largely transcriptionally silent. The
dynamic transition between these states is mediated by chromatin modifications such as methylation
and acetylation, which are laid down by epigenetic writers, bound by epigenetic readers, and removed by
epigenetic erasers. Many epigenetic proteins have more than one functional domain, allowing them to
function as epigenetic readers and writers or epigenetic readers and erasers. A growing number of small-
molecule drugs are being developed to target these epigenetic regulators. Highlighted in red are the targets
for epigenetic therapies that are either in routine clinical use or currently being evaluated in clinical trials.
IDH1 and IDH2 are marked with asterisks because although they are not epigenetic proteins, mutations
in these proteins profoundly affect epigenetic erasers of DNA methylation (TET proteins) and histone
methylation (Jumonji-C domain proteins). Inhibitors of IDH1 and IDH2 reduce levels of the oncometabolite
2HG and alleviate the inhibition of these epigenetic erasers.
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Thank you very much! 
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