The Epigenome Tools 2: ChIP-Seq and Data Analysis

Chongzhi Zang

zang@virginia.edu http://zanglab.com

PHS5705: Public Health Genomics March 20, 2017

1

Outline

- Epigenome: basics review
- ChIP-seq overview
- ChIP-seq data analysis

The *epigenome* is a multitude of chemical compounds that can tell the *genome* what to do. The epigenome is made up of chemical compounds and proteins that can attach to DNA and direct such actions as turning genes on or off, controlling the production of proteins in particular cells. -- from genome.gov

Epigenomic marks

- DNA methylation
- Histone marks
 - Covalent modifications
 - Histone variants
- Chromatin regulators
 - Histone modifying enzymes
 - Chromatin remodeling complexes
- * Transcription factors

Histone modifications

K4

Histone H3

K9

- Nucleosome Core Particles
- Core Histones: H2A, H2B, H3, H4
- Covalent modifications on histone tails include:

methylation (me), acetylation (ac), phosphorylation ...

- Histone variants
- Histone modifications are implicated in influencing gene expression.

Allis C. et al. Epigenetics. 2006

Histone modifications associate with regulation of gene expression

6

"Functions" of histone marks

Functional Annotation	Histone Marks
Promoters	H3K4me3
Bivalent/Poised Promoter	H3K4me3/H3K27me3
Transcribed Gene Body	H3K36me3
Enhancer (both active and poised)	H3K4me1
Poised Developmental Enhancer	H3K4me1/H3K27me3
Active Enhancer	H3K4me1/H3K27ac
Polycomb Repressed Regions	H3K27me3
Heterochromatin	H3K9me3

H3K4me3/H3K27me3 Bivalent Domain

From: https://pubs.niaaa.nih.gov/publications/arcr351/77-85.htm 8

ChIP-seq: Profiling epigenomes with sequencing

Published ChIP-seq datasets are skyrocketing We are entering the Big Data era

Number of ChIP-seq datasets on GEO

Chromatin ImmunoPrecipitation (ChIP)

Protein-DNA crosslinking in vivo (for TF)

Chop the chromatin using sonication (TF) or micrococal nuclease (MNase) digestion (histone)

Specific factor-targeting antibody

Immunoprecipitation

DNA purification

PCR amplification and sequencing

ChIP-seq data analysis overview

ChIP-seq data analysis overview

- Where in the genome do these sequence reads come from? - Sequence alignment and quality control
- What does the enrichment of sequences mean? Peak calling
- What can we learn from these data? Downstream analysis and integration

ChIP-seq data analysis: basic processing

X

X

• alignment of each sequence read: bowtie or BWA

cannot map to the reference genome can map to multiple loci in the genome can map to a unique location in the genome

• redundancy control:

Langmead et al. 2009, Zang et al. 2009

ChIP-seq data analysis: Peak calling

DNA fragment size estimation
pile-up profiling

ChIP-seq data analysis: Peak calling

Sharp peaks

transcription factor binding, DNase, ATAC-seq

MACS (Zhang, 2008) dynamic background Poisson model

Broad peaks

Histone modifications, "super-enhancers" Diffuse

> **SICER** (Zang, 2009) Spatial clustering of localized weak signal and integrative Poisson model

MACS

- Model-based Analysis for ChIP-Seq
- Tag distribution along the genome ~ Poisson distribution (λ_{BG} = total tag / genome size)
- ChIP-seq show local biases in the genome
 - Chromatin and sequencing bias
 - 200-300bp control windows have to few tags
 - But can look further

http://liulab.dfci.harvard.edu/MACS/ Zhang et al, *Genome Bio*, 2008 ChIP

SICER

• Spatial-clustering Identification of ChIP-Enriched Regions

ChIP-seq peak calling: Parameters

Parameter	Remarks
Genome	Species and reference genome version, e.g. hg38, hg18, mm10, mm9
Effective genome rate	Fraction of the mappable genome, vary in species, read length, etc.
DNA fragment size	Estimated by default; can specify otherwise
Window size	Data resolution, usually nucleosome periodicity length, i.e. 200bp
Gap size	(for SICER only) Allowable gaps between eligible windows, usually 2 or 3 windows
P-value cut-off	Threshold for peak calling, from model
False discovery rate (FDR) cut-off	Threshold for peak calling, BH correction from p-value.

ChIP-seq data analysis: Review

- 1. Read mapping (sequence alignment)
- 2. Peak calling: *MACS* or *SICER*
 - 1. QC
 - 2. DNA fragment size estimation (for Single-end)
 - 3. Pile-up profile generation
 - 4. Peak/signal detection
- 3. Downstream analysis/integration

Data formats

- fastq: raw sequences
- BED:

chr11	10344210 10344260 255	0	-
chr4	76649430 76649480 255	0	+
chr3	77858754 77858804 255	0	4
chr16	62688333 62688383 255	0	4
chr22	33031123 33031173 255	0	-

- SAM/BAM: aligned sequencing reads
- bedGraph, Wig, bigWig: pile-up profiles for browser visualization

Data flow

Galaxy: web-interface analysis platform

https://usegalaxy.org/

Run MACS on Cistrome, a Galaxy-based platform

• <u>http://cistrome.org/ap/</u>

Galaxy / Cistrome / Cistrome ×									
\leftrightarrow \rightarrow C () cistrome.org/ap/root									
- Galaxy / Cistrome	Analyze D	ata Workflow Shared Da	ta → Lab → Visualization → Help → User →		Using 30.3 GB				
Tools	Upload File (version 1.1.4)			History	<i>2</i> ¢				
search tools CISTROME TOOLBOX Import Data Upload File from your computer CistromeFinder Import from Cistrome Finder CistromeCR Import from Cistrome Chromatin Regulator Expression CEL file packager can download .cel files from GEO by given GSM IDs and prepare a cel.zip file for expression analysis. GenomeSpace import from file browser Data Preprocessing	File Format: Auto-detect Which format? If for expressi File (Please avoid Windows Choose File No file chosen TIP1: Due to browser limitati method (below) or ASPERA (p instruction and specify cel.zi URL/Text: Here you may specify a list of Files uploaded via ASPERA:	on data, choose cel.zip or xys format text file): ons, uploading files larger that lease read the instruction). T p or xys.zip for file format.	s.zip. See help below an 2GB is guaranteed to fail. To upload large files, use t IP2: If you want to upload expression data, please read the contents of a file.	the URL the URL the URL the ORL the URL the ORL the OR					
Gene Expression	File	Size	Date	<u>61: Heatmap image</u>	(*)				
Integrative Analysis Liftover/Others GALAXY TOOLBOX Get Data Text Manipulation Filter and Sort Join, Subtract and Group Convert Formats Extract Features Fetch Sequences	Your ASPERA upload director This Galaxy server allows you cistrome.dfci.harvard.edu u Convert spaces to tabs: Yes Use this option if you are end Genome: Human Dec. 2013 (GRCh38) Execute	ry contains no files. a to upload files via ASPERA. This ing your Cistrome credential tering intervals by hand. 3/hg38) (hg38)	To upload some files, log in to the ASPERA server at ls (email address and password).	60: Heatmap log59: Heatmap k-mean assified regions58: Heatmap R script57: Heatmap image56: Heatmap log55: Heatmap k-mean assified regions					
					\				

Run SICER on Galaxy-based platforms

http://services.cbib.u-bordeaux.fr/galaxy/

ChIP-seq: Downstream analysis

- Data visualization
 - UCSC genome browser: <u>http://genome.ucsc.edu/</u>
 - WashU epigenome browser: <u>http://epigenomegateway.wustl.edu/</u>
 - IGV: <u>http://software.broadinstitute.org/software/igv/</u>
- Meta analysis
 - CEAS: <u>http://liulab.dfci.harvard.edu/CEAS/</u>
- Integration with gene expression
 - BETA: <u>http://cistrome.org/BETA/</u>
 - MARGE: <u>http://cistrome.org/MARGE/</u>
- Integration with other epigenomic data
 - GREAT: <u>http://great.stanford.edu</u>
 - ENCODE SCREEN: <u>http://screen.umassmed.edu/</u>
 - MANCIE: <u>https://cran.r-project.org/package=MANCIE</u>
 - Cistrome DB: <u>http://cistrome.org/db/</u>

BETA: Binding Expression Target Analysis

MARGE: A big data driven, integrative regression and semisupervised approach for predicting functional enhancers

Wang, Zang et al. Genome Res 2016

https://www.encodeproject.org/

ICODE Data Ency	clopedia Ma	terials & Methods Help															Se	arch	
Mus musculus Drosophila melanogaster Caenorhabditis elegans Drosophila pseudoobscura	1736 986 645 10 + See more	13213 results	Child	D. Seq	Wese	Shering Deg	total AMA Sec.	Philip 4-369	Ren micro	NGBO CALIFY	Small Rus	RNA B. Sec	Malubar, Sec	Carbonic 4	micre array	single court	Di An And And	Peolised aray veg	23 more
Biosample type		immortalized cell line																	
immortalized cell line	4786	K56	2 557	7	18	270 12	2 17	8 10	1	1 7	7 1	1	2	9	1	50	2	6	
tissue	3796	HepG	2 297	3	11	254 6	14	07	2	1 3	3		2	6	1		2	6	
primary cell	1920	A549	9 327	14	21			2	1	ç	9		2	3			1		
whole organisms	1322	GM1287	B 205	2	10	6		8	2	16	5 1	1	2	6	1 1	13	2	6	
in vitro differentiated cells	637	MCF-	7 144	8	5	1		7	5	7	7 1		2	3	1		1	6	
		and 177 more	e																
	+ See more	tissue																	
Organ		live	r 155	5	14	11	1		1	10 1	16	2	3		7	2	1		
brain	648	hear	t 99	20	8	11	1	10	1	9 1	17	2			8	1			
skin of body	355	stomaci	n 94	18	11	9		10	1	8 4	4 4	5	1		4		•		
muscle organ	336	lung	g 80	15	8	5		10	3	1	1 4	1			4		2		
heart	288	kidne	y 69	15	9	4		2	4	4	4				4		2		
lung	278	and 153 more	9																
lang	210	common myeloid progenitor CD24																	
	+ See more	common myelola progenitor, CD34	67	13	1			13	9	1									
Project		IMB-9	0 61	2	3	2		1	1	2 9	9 1		3	3			1	6	
FNCODE	8378	CD4-positive helper T cel	1 77	6	3			1	•	3	1		1	Ŭ			· ·	3	
Boadman	2848	foreskin fibroblas	t 31	5	4			3	2	1 1	1 3		2	1			2	6	
modENCODE	883	endothelial cell of umbilical veil	n 35	2	5			2		1	1		1	5	1		1	6	
modERN	773	and 140 more	е																
CCR	331	whole organisms				· · · · ·													
uun	331	multi-cellular organisn	n 1146		73	50)							15					
Genome assembly (visual	ization)	carcas	s		12	4								4					
ha19	5248	in vitro differentiated cells																	
GRCh38	4460	mesenchymal stem ce	II 61	1	4				2	1									
mm10	1335	dendritic ce	II 11			25	5												
dm3	602	neuronal stem ce	II 35	1	4				1	2									
dm6	406	chondrocyte	e 32						3										

Cistrome Data Browser

http://cistrome.org/db/

C istrome.org/db/#/

Dataset Browser

Containing word(s):	(X)	Search		Options -
Species	Biological Sources		« Factors	
All	All		All	
Homo sapiens	1015c		ACTB	
Mus musculus	10326		ADNP	
	1064Sk		ADNP2	
	106A		AEBP2	
	10T1/2		AFF1	

Results					
Batch	Species	Biological Source	Factor •	Publication •	Status
	Mus musculus	V6.5; Embryonic Stem Cell; Embryo	ATF7IP		completed
	Homo sapiens	B Lymphocyte; Lymph Node	DNase	Thurman RE, et al. Nature 2012	completed
	Homo sapiens	MCF-7; Epithelium; Mammary Gland	ESR1	Welboren WJ, et al. EMBO J. 2009	completed
	Homo sapiens	H9; Embryonic Stem Cell; Embryo	H3K23me2	Lister R, et al. Nature 2009	completed
	Homo sapiens	Melanocyte; Foreskin	H3K27ac	Bernstein BE, et al. Nat. Biotechnol. 2010	completed
	Mus musculus	B Lymphocyte; Bone Marrow	H3K27me3	Revilla-I-Domingo R, et al. EMBO J. 2012	completed
	Mus musculus	Fibroblast; Embryo	H3K4me1	Koche RP, et al. Cell Stem Cell 2011	completed
	Homo sapiens	H1; Embryonic Stem Cell; Embryo	H3K4me2	Lister R, et al. Nature 2009	completed
\cap	Mue mueculue	Fibroblast: Embruo	Hakaac	Fang TC at al. I. Evn. Mad. 2012	completed

ChIP-seq data analysis: Review

- 1. Read mapping (sequence alignment)
- 2. Peak calling: *MACS* or *SICER*
 - 1. QC
 - 2. DNA fragment size estimation (for Single-end)
 - 3. Pile-up profile generation
 - 4. Peak/signal detection
- 3. Downstream analysis/integration

Summary

- ChIP-seq is used to profile epigenomes
- ChIP-seq data analysis
 - MACS for narrow peaks
 - SICER for broad peaks
- Online tools and resources

Further Reading

The cancer epigenome: Concepts, challenges, and therapeutic opportunities **Science** 17 Mar 2017: Vol. 355, Issue 6330, pp.1147-1152

http://science.sciencemag.org/content/355/6330/1147

Thank you very much!

zang@virginia.edu http://zanglab.com