
STATISTICS REVIEW II



OUTLINE
• Sampling Bias
• Simpson’s Paradox
• Type I and type II errors
• Frequentist vs. Bayesian
• A case study



Which of the following statements about 
p-values is true?
A. P-values measure how big the difference is between the 

datasets compared.
B. P-value is the probability of observing the data by 

random chance.
C. P-value is the least probability of observing the data 

under the assumption that the null hypothesis is true.



ASA statement on statistical significance and 
p-values

1. P-values can indicate how incompatible the data are with a 
specified statistical model.

2. P-values do not measure the probability that the studied 
hypothesis is true, or the probability that the data were produced 
by random chance alone.

3. Scientific conclusions and business or policy decisions should 
not be based only on whether a p-value passes a specific 
threshold.



ASA statement on statistical significance and 
p-values

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size 

of an effect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence 

regarding a model or hypothesis.



What is the control?
What is the null hypothesis? 





What is the population/baseline?

• Aircrafts that had 
returned from missions

• All aircrafts that went to 
missions



More examples about sampling bias

• A survey conducted at a healthcare provider found that 
80% of its visitors were diagnosed with a disease.



More examples about sampling bias

• Are talent and attractiveness negatively correlated?

Population Celebrities



Simpson’s Paradox

Treatment
Stone size  Treatment A Treatment B

Small stones Group 1
93% (81/87)

Group 2
87% (234/270)

Large stones Group 3
73% (192/263)

Group 4
69% (55/80)

Both 78% (273/350) 83% (289/350)

Kidney stone treatments’ success rates



Simpson’s Paradox



Simpson’s Paradox
Small stones Large stones

→    Treatment ATreatment B    ←
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Simpson’s Paradox: An scRNA-seq example

Proportion Pre-treatment Post-treatment
Subpopulation A 0.04 0.80
Subpopulation B 0.16 0.16
Subpopulation C 0.80 0.04
Total 1.00 1.00

Gene X expression Pre-treatment Post-treatment Log2 Fold Change
Subpopulation A 0.10 0.30 +1.58
Subpopulation B 1.50 1.80 +0.26
Subpopulation C 3.00 3.50 +0.22
Population Average 2.64 0.67 -1.98

Credit: Jean Fan, JEFworks



Confusion Matrix

(Type I Error)

(Type II Error)

Source: https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826 
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Summary

Source: Wikimedia. Author: Lavender888000



Example: Rare disease screening

Suppose:
• Disease prevalence: 1 in 10,000 (0.01%)
• Test sensitivity: 99% (correctly detects 99% of cases)
• Test specificity: 99% (correctly rules out 99% of non-cases)

Now test 1,000,000 people:
• True cases = 100

– True positives = 99 (99% of 100)
– False negatives = 1

• Non-cases = 999,900
– False positives = 9,999 (1% of 999,900)
– True negatives = 989,901

• So total positives reported by the test = 99 + 9,999 = 10,098.
Only 99 of those are real.

• The Positive Predictive Value (PPV) = 99 / 10,098 ≈ 0.98%.
That means 99.02% of the “positive” results are false alarms.



Why screening does not work well for rare 
diseases with imperfect tests?

• Key issue: Even if a test has "good" accuracy (say, 99% sensitivity and 99% 
specificity), when the disease is rare, most positive results will actually be 
false positives rather than true positives.

• This is because the prevalence (base rate) of the disease is very low, so the 
number of healthy individuals vastly outnumbers the true cases.

• Example: COVID antibody tests in the early stage of the COVID pandemic: 
When prevalence was <5% in most populations, even tests with 95% 
specificity yielded more false positives than true positives.



The Statistics Behind It

• The key relationship is given by Bayes’ theorem:

• When prevalence is very small, the denominator is dominated by 
false positives (the (1−specificity)×(1−prevalence) term).

• This drives PPV close to zero, even for high-quality tests.



Summary

• Population-wide screening for rare diseases with tests of 
“ordinary” accuracy does not work because the false positives 
overwhelm the true positives. 

• Instead, targeted screening of higher-risk subgroups (increasing 
effective prevalence) may dramatically improve predictive value.



Bayes’ Theorem



Frequentist vs. Bayesian
Frequentist
• P-value
• Confidence
• Maximum Likelihood Estimation 

(MLE)

Bayesian
• Bayes’ Theorem



Frequentist vs. Bayesian



Frequentist vs. Bayesian



A case study







• Multiple testing correction (FDR) was not applied correctly.
– Sun et al. “used a series of criteria to pre-select 56 candidate genes of 

interest, thus reducing the burden of multiple hypothesis testing.”
– This is double-dipping!

• Fail to use animal as sample.
– “Treatment of individual cells as independent samples.”
– Cells correlate from the same animal/sample.



Monty Hall Problem

Source: Wikipedia



Monty Hall Problem

Li Nat Biotech 2023. PMID: 37198440



The order of action matters

Li Nat Biotech 2023. PMID: 37198440



SUMMARY

1. Avoid sampling bias.
2. Carefully plan the study design.
3. Beware Simpson’s paradox.
4. Think before you analyze.
5. Statistical analysis is more than a set of computations.



https://www.youtube.com/watch?v=cUqoHQDinCM



Record procedure details!
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