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Which of the following statements about
p-values is true?

A. P-values measure how big the difference is between the
datasets compared.

B. P-value is the probability of observing the data by
random chance.

C. P-value is the least probability of observing the data
under the assumption that the null hypothesis is true.



ASA statement on statistical significance and
p-values

1. P-values can indicate how incompatible the data are with a
specified statistical model.

2. P-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were produced
by random chance alone.

3. Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.



ASA statement on statistical significance and
p-values

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size
of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.



What is the control?
What is the null hypothesis?






What is the population/baseline?

 Aircrafts that had
returned from missions

« All aircrafts that went to
MmISSIoNS




More examples about sampling bias

* A survey conducted at a healthcare provider found that
80% of its visitors were diagnosed with a disease.



More examples about sampling bias

 Are talent and attractiveness negatively correlated?
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Simpson’s Paradox

Kidney stone treatments’ success rates

. il Treatment A Treatment B
Stone size

Small stones L ElioLp 2
93% (81/87) 87% (234/270)

Large stones EveLs e <
9 73% (192/263) 69% (55/80)

Both 78% (273/350) 83% (289/350)



Simpson’s Paradox




Simpson’s Paradox

Small stones Large stones

Success rate

Treatment B <« X — Treatment A



Simpson’s Paradox: An scRNA-seq example

Pre-treatment Post-treatment

Subpopulation A 0.04 0.80
Subpopulation B 0.16 0.16
Subpopulation C 0.80 0.04
Total 1.00 1.00
Subpopulation A 0.10 0.30 +1.58
Subpopulation B 1.50 1.80 +0.26
Subpopulation C 3.00 3.50 +0.22
Population Average 2.64 0.67 -1.98

Credit: Jean Fan, JEFworks



Confusion Matrix
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Summary
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Example: Rare disease screening

Suppose:

 Disease prevalence: 1in 10,000 (0.01%)

» Test sensitivity: 99% (correctly detects 99% of cases)

» Test specificity: 99% (correctly rules out 99% of non-cases)

Now test 1,000,000 people:

« True cases = 100
— True positives = 99 (99% of 100)
— False negatives =1
« Non-cases = 999,900
— False positives = 9,999 (1% of 999,900)
— True negatives = 989,901
» So total positives reported by the test = 99 + 9,999 = 10,098.
Only 99 of those are real.

 The Positive Predictive Value (PPV) =99/ 10,098 = 0.98%.
That means 99.02% of the “positive” results are false alarms.



Why screening does not work well for rare
diseases with imperfect tests?

« Key issue: Even if a test has "good" accuracy (say, 99% sensitivity and 99%
specificity), when the disease is rare, most positive results will actually be
false positives rather than true positives.

* This is because the prevalence (base rate) of the disease is very low, so the
number of healthy individuals vastly outhumbers the true cases.

 Example: COVID antibody tests in the early stage of the COVID pandemic:
When prevalence was <5% in most populations, even tests with 95%
specificity yielded more false positives than true positives.



The Statistics Behind It

* The key relationship is given by Bayes’ theorem:

PPV — (sensitivity) x (prevalence)

(sensitivity x prevalence) + (1 — specificity) x (1 — prevalence)

 When prevalence is very small, the denominator is dominated by
false positives (the (1-specificity)x(1—-prevalence) term).

« This drives PPV close to zero, even for high-quality tests.



Summary

« Population-wide screening for rare diseases with tests of
“ordinary” accuracy does not work because the false positives

overwhelm the true positives.

* |nstead, targeted screening of higher-risk subgroups (increasing
effective prevalence) may dramatically improve predictive value.



Bayes’ Theorem
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Frequentist vs. Bayesian

Frequentist Bayesian

* P-value - Bayes’ Theorem

* Confidence

« Maximum Likelihood Estimation Likelihood Prior

(|\/|LE) Po7erior \ /
En(e) — En(ea Y) — fn (y; 0) p(e | data) . p(dat? | 9) )p(@)
p(data
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Normalization



Frequentist vs. Bayesian

Frequentist Bayesian
- pvalue
Hyptzil::esm (null hypothesis Bayes factor
significance test)

Estimation ma:;rg:qr;\tglﬁl,lczood posterior distribution

with £ . | with highest density
uncertainty conridence '”t?“.’a interval

(The "New Statistics™)




Frequentist vs. Bayesian

% %

Probability of the | Probability of the
events observed :

given a theory given the observed events
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A case study

Article

Spatial transcriptomics reveal neuron-
astrocyte synergy inlong-termmemory

https://doi.org/10.1038/s41586-023-07011-6 Wenfei Sun"?¢, Zhihui Liu**¢, Xian Jiang? Michelle B. Chen', Hua Dong*, Jonathan Liu®,
Thomas C. Siidhof?** & Stephen R. Quake™**
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Accepted: 21 December 2023

Memory encodes past experiences, thereby enabling future plans. The basolateral
amygdalais acentre of salience networks that underlie emotional experiences and
thus has akey role in long-term fear memory formation'. Here we used spatial and

W Check for updates single-cell transcriptomics to illuminate the cellular and molecular architecture of the
role of the basolateral amygdala inlong-term memory. We identified transcriptional
signatures in subpopulations of neurons and astrocytes that were memory-specific
and persisted for weeks. These transcriptional signatures implicate neuropeptide
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Matters arising

False positives instudy of memory-related

gene expression
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Matters arising

False positives instudy of memory-related
gene expression

« Multiple testing correction (FDR) was not applied correctly.

— Sun et al. “used a series of criteria to pre-select 56 candidate genes of
interest, thus reducing the burden of multiple hypothesis testing.”

— This is double-dipping!
* Falil to use animal as sample.

— “Treatment of individual cells as independent samples.”
— Cells correlate from the same animal/sample.



Monty Hall Problem

Source: Wikipedia



Monty Hall Problem

a Contestant Host If contestant does not switch
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Correct

Incorrect

The order of action matters

-

P-value
calculation
(step 1)

P-value
calculation
(step 1)

P-value
threshold-
ing (step 2)

Top feature
screening

FDR

P-value
threshold-
ing (step 2)

Top feature
validation

FDR

0.0

0.2 0.4 0.6
FDP

Li Nat Biotech 2023. PMID: 37198440



SUMMARY

1. Avoid sampling bias.

2. Carefully plan the study design.

3. Beware Simpson’s paradox.

4. Think before you analyze.

5. Statistical analysis is more than a set of computations.



Ordinary James-Stein

https://www.youtube .com/watch?v=cUqoHQDIinCM



HOW TO:
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